PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kinematic Control of a Mobile Robot Performing Manufacturing Tasks on Non-Planar Surfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mobile robotic systems are becoming viable technologies for automating manufacturing processes in fields that traditionally have seen little automation. Such fields include pipeline construction, green energy development, infrastructure and shipbuilding. To operate in these environments, the mobile robotic platform must provide controlled motion of a manufacturing toolset over the surface of a structure which is generally non-planar. One such example is welding a seam along a non-flat ship hull where the surface may consist of sections resembling common geometric shapes such as cylinders or spheres and the tool must follow a path defined by the weld seam. This paper will present a kinematic control approach applicable to one mobile robot topology performing a task on a cylindrical surface. This method is readily generalized to other robot topologies or surface geometries. The method is based on a kinematic model that predicts the robot motion and configuration joint parameters while on a nonplanar surface with the desired motion prescribed in local tool space. The effort is motivated by a practical application of welding on steel hulls or other surfaces and the results will be compared with these empirical experiences. A discussion of how these results can be used to guide future design of mobile robot platforms for manufacturing is provided.
Słowa kluczowe
Twórcy
autor
  • Tennessee Technological University, Cookeville, Tn. USA
autor
  • Tennessee Technological University, Cookeville, Tn. USA
autor
  • Tennessee Technological University, Cookeville, Tn. USA
Bibliografia
  • [1] O’Toole A., Canfield S. L., “Developing a Kinematic Estimation Model for a Climbing Mobile Robotic Welding System”. In: Proc. of the 2010ASME International Design Engineering Technical Conferences, Montreal Quebec, Canada, 15–18 Aug. 2010, DETC2010-28878.
  • [2] Canfield S. L., Beard J. W., “Robotic inspection in power plants”, ISA 51st Annual Instrumentation Symposium, 2005.
  • [3] Mandow A., Martínez J. L., Morales J., et al., “Experimental kinematics for wheeled skid-steer mobile robots”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007. DOI: 10.1109/IROS.2007.4399139.
  • [4] Wong J. Y., Huang W., “Wheels vs. tracks–A fundamental evaluation from the traction perspective”, Journal of Terramechanics, vol. 43, no. 1, 2006, 27–42.
  • [5] Wong J. Y., Chiang C., “A general theory for skid steering of tracked vehicles on firm ground”. In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 215, no. 3, 2001, 343–355.
  • [6] Martínez J. L,. Mandow A., Morales J., Pedraz S., Garcia-Cerezo A., “Approximating kinematics for tracked mobile robots”, The International Journal of Robotics Research, vol. 24, no. 10, 2005, 867–878. DOI: 10.1177/0278364905058239.
  • [7] Shiller Z., Hua M., “Trajectory planning of tracked vehicles”. In: Proceedings – 1993 IEEE International Conference on Robotics and Automation. DOI: 10.1109/ROBOT.1993.292242.
  • [8] Kozłowski K., Pazderski D., “Modeling and control of a 4-wheel skid-steering mobile robot”, Int. J. Appl. Math. Comput. Sci., vol. 14, no. 4, 2004, 477–496.
  • [9] Caracciolo L., De Luca L., “Trajectory tracking control of a four-wheel differentially driven mobile robot”. In: Proceedings. 1999 IEEE International Conference on Robotics and Automation, vol. 4. DOI: 10.1109/ROBOT.1999.773994.
  • [10] Song X., Seneviratne L.D., Althoefer K., Song Z., “A robust slip estimation method for skidsteered mobile robots”. In: 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008. DOI: 10.1109/ICARCV.2008.4795532.
  • [11] Yu W., Chuy O., Collins E., Hollis P., “Analysis and Experimental Verification for Dynamic Modeling of A Skid-Steered Wheeled Vehicle”, IEEE Proceedings on Robotics, vol. 26, no. 2, April 2010.
  • [12] Sarkar N., Kumar V., “Control of Mechanical Systems With Rolling Constraints Application to Dynamic Control of Mobile Robots”, The International Journal of Robotics Research, vol. 13, no. 1, 1994, 55–69.
  • [13] Sarkar N., Yun X., Kumar V., “Dynamic Control of 3-D Rolling Contacts in Two-Arm Manipulation”, IEEE Transactions on Robotics and Automation, vol. 13, no. 3, 1997, 364–376.
  • [14] Chakraborty N., Ghosal A., “Kinematics of wheeled mobile robots on uneven terrain”, Mechanism and Machine Theory, vol. 39, no. 12, 2004, 1273–1287. DOI: 10.1016/j.mechmachtheory.2004.05.016.
  • [15] Davis P.W., Sreenivasan S.V., Choi B.J., “Kinematics of Two Wheels Joined By A Variable Length Axle on Uneven Terrain”. In: ASME 1997 International Design Engineering Technical Conferences, DETC97/DAC-3857, Sacramento, 14–16 Sept. 1997.
  • [16] Sreenivasan S. V., Nanua P., “Kinematic Geometry of Wheeled Vehicle Systems”. In: 24th ASME Mechanisms Conference, 96-DETC-MECH-1137, Irvine, CA, 1996.
  • [17] Auchter J., Moore C. A., Ghosal A., “A novel kinematic model for rough terrain robots”, Advances in Computational Algorithms and Data Analysis, Springer Netherlands, 2009, 215–234. DOI: 10.1007/978-1-4020-8919-0_16.
  • [18] Montana D.J., “The kinematics of contact and grasp”, Int. J. Rob. Res., vol. 7, no. 3, ,1988, 17–32.
  • [19] Spong M., Vidyasagar M., Robot modeling and control, New York: John Wiley & Sons, 2006.
  • [20] Siegwart, R. and Nourbakhsh, I. Intro t o to Autonomous Mobile Robots. MIT press, 2004
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b71d00b8-f7da-4048-8d4d-7c579f9ca113
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.