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Abstract:
Mobile robotic systems are becoming viable technolo-
gies for automating manufacturing processes in fields 
that traditionally have seen little automation. Such 
fields include pipeline construction, green energy de-
velopment, infrastructure and shipbuilding. To oper-
ate in these environments, the mobile robotic platform 
must provide controlled motion of a manufacturing 
toolset over the surface of a structure which is gener-
ally non-planar. One such example is welding a seam 
along a non-flat ship hull where the surface may con-
sist of sections resembling common geometric shapes 
such as cylinders or spheres and the tool must follow a 
path defined by the weld seam. This paper will present 
a kinematic control approach applicable to one mobile 
robot topology performing a task on a cylindrical sur-
face. This method is readily generalized to other robot 
topologies or surface geometries. The method is based 
on a kinematic model that predicts the robot motion 
and configuration joint parameters while on a non-
planar surface with the desired motion prescribed in 
local tool space. The effort is motivated by a practical 
application of welding on steel hulls or other surfaces 
and the results will be compared with these empirical 
experiences. A discussion of how these results can be 
used to guide future design of mobile robot platforms 
for manufacturing is provided. 

Keywords: kinematic, control, mobile robot, manufac-
ture, non-planar surface

1. Introduction
The development of mobile robot systems is grow-

ing at a rapid pace. These systems are being investi-
gated in arenas including surveillance, agriculture, 
medical and manufacturing to name a few. In manu-
facturing, mobile robots may provide an avenue to 
bring increased automation to unstructured manu-
facturing environments in which the manufactured 
device is large and/or must be constructed on-site 
rather than in a factory. Examples of unstructured 
manufacturing environments include erecting civil 
structures, constructing energy producing facilities, 
tanks, pipelines, or shipbuilding. Early research on 
mobile robot manufacturing applications has shown 
promise in automating tasks such as welding and in-
spection, [1, 2]. These applications require the ability 

to follow a path while performing the automated task 
at hand. Task planning and control rely on a suitable 
kinematic and/or dynamic model of the mobile sys-
tem. It has been demonstrated the kinematics of ve-
hicles is dependent on the terrain and as such must 
be considered in the modeling process [3–5]. These 
studies generally consider surface material prop-
erties rather than the geometric properties which 
may directly impact friction and potential slipping. 
In manufacturing, the surfaces are generally metal 
which tend to be more isotropic than ground terrain. 
However, geometric properties are important if the 
manufacturing shapes are non-planar. The vast ma-
jority of kinematic models demonstrated in the litera-
ture assume the robot system is operating on planar 
surfaces [6–9]. In practice, the mobile robot often 
operates on a manufactured surface generally con-
sisting of non-planar surfaces. Most kinematic con-
trol models assume the surface is locally planar. To 
a much smaller extent, kinematic models for mobile 
robots have been developed that can account for non-
planar geometric surfaces [10–17]. Of these papers, 
the most common technical approach to building the 
model is to generate a state-specific representation 
of the interaction between the wheel contact and the 
ground, [9], or to employ a more general relationship 
describing the kinematic behavior of contact between 
the wheel and surface, while retaining the classic 
kinematic assumptions of no relative motion along 
a common normal, [11]. Several papers build on gen-
eralized contact equations proposed and developed 
by Montana, [18], resulting in a set of five ordinary 
differential equations describing the propagation of 
the contact point between two general surfaces. This 
approach has been applied to mobile robot modeling 
by several authors including [12–14], where the most 
common application of these models is to evaluate 
specific mobile robot topologies that can eliminate 
or reduce wheel slipping when traveling over non-
planar terrain, [15–17]. While little work has been 
conducted on applications regarding manufactur-
ing-specific tasks, these tasks pose an impact on the 
model development. The geometric properties of the 
surfaces are known a-priori and in many cases con-
sist of simple Boolean shapes. Manufacturing tasks 
require the robot to coordinate a tool function while 
following a prescribed path, with coordinates speci-
fied in tool space, and place specific tolerances on the 
tool motion. Finally, the manufacturing task is known 
ahead of time and can be simulated. This allows an 
evaluation of the planar assumption and determines 
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the range of manufacturing operations suitable for 
a more simplistic planar-based kinematic model as 
opposed to a detailed, non-planar model.

2. Approach
A kinematic model of the robot system suitable 

for non-planar surfaces is constructed in this section. 
This model is developed in the context of a mobile 
manufacturing robot capable of climbing metal sur-
faces in order to conduct common tasks associated 
with manufacturing, [1]. Such a model implies that 
the robot is primarily traveling at lower velocities 
associated with tasks such as welding, machining, or 
cutting. It also implies that the surface features can 
be assumed more isotropic (material properties) or 
known a priori (geometrical properties). In manufac-
turing or inspection operations, the task is generally 
defined as a specified path or trajectory along which 
a tool must travel while conducting welding, cutting 
or similar type functions. As an example, consider the 
robot in Figure 1 in which the mobile robot is simul-
taneously cleaning and inspecting the wall of a tank 
for pitting, corrosion, or cracks. This scenario is rep-
resentative of a broad variety of manufacturing tasks 
that could be performed by mobile robots. The robot 
in this example is operating on a surface which is pre-
dominantly cylindrical in shape; with many manufac-
turing surfaces consisting of a relatively small num-
ber of uniform geometric shapes. Therefore, path 
following along simplistic geometric surfaces will 
serve as the representative scenario for this paper. 
The improved kinematic model of the robot system 
can be used in several ways, such as a tool for design 
and development of these robots, to serve as a tool 
in planning, manufacturing and maintenance tasks, or 
to aid in navigation during operation. This model will 
provide a better predictor of robot kinematic motion 
on a non-planar surface and will be demonstrated for 
a cylindrical climbing surface; although the method 
can be applied to any other surface by defining the 
surface curvature, metric and torsion. 

In the traditional mobile robot model for a differ-
ential drive system, a set of differential equations are 
given in the robot kinematics that describe propaga-
tion of the robot platform frame position and orienta-
tion in time as,

	 	 (1)

where  describes the planar motion of the 
robot in the local robot frame given,  the vec-
tor of inputs for the differential drive system (input 
wheel rotations) and J the system Jacobian, which 
is independent of robot configuration parameters, 

. The model in Equation 1 is generally devel-
oped by assuming pure roll and no slip which can be 
used to describe the motion of the contact points be-
tween the ground and wheel surfaces as,

	 	 (2)

	 ,	  (3)

with   and   representing the velocity of the con-
tact point as 2d vectors residing in the plane tangent 
to the wheel and surface respectively, rW the wheel 
radius and, di the vector from the robot frame to the 
contact point and subscripts W and S identify the 
contact point for the wheel or surface respectively. 
Further, the subscript i will be used throughout this 
paper to identify the wheel for which the equations 
are written; for example the left wheel, right wheel or 
castor wheel (i = L, R ,C). The contact point velocities 

  and   are described in the wheel and surface 
frames respectively with   projections from the 
robot frame to wheel and surface frame. These equa-
tions can be integrated in time to track the robot lo-
cation. Furthermore, when considering robot motion 
on a planar surface, any set of frames depending on 
the configuration coordinates could remain constant 
since the location of the contact point between the 
wheels and the surface is assumed to be constant rel-
ative to the robot. 

When considering motion on non-planar surfaces, 
the Jacobian, J, becomes a function of q, containing 
the traditional configuration coordinates plus a se-
ries of geometry dependent variables that describe 
the configuration of the robot chassis relative to the 
surface through each of the wheels (see for example 
Figure 2). The contact velocities are functions of sur-
face conditions and the q update must be consistent 
with the surface geometry. It should be noted that 
one of the complicating factors in the non-planar 
case is that it is non-obvious to define a consistent 
and desired velocity state. For the planar case, this is 
straightforward; define  or use the no-slip condition 
to define the robot frame velocity through  and . In 
the non-planar case, the robot frame velocity must be 
defined consistent with kinematic and geometric con-
ditions. A method to address these issues consists of 
the following steps. Starting from a known location, 

Fig. 1. Mobile Robot Performing Surface Inspection
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an instantaneous kinematic model of the robot is con-
structed assuming a temporary state of no slip. This is 
used to find the relative velocities between the wheels 
and climbing surface for a consistent set of input ve-
locities. Next, a set of first order differential equations, 
called contact equations, are employed to define the 
velocity of the contact points in the wheel and surface 
frames based on these relative velocities. The contact 
equations are integrated in time to update the loca-
tion of the robot on the climbing surface. Finally, the 
robot configuration parameters are updated in time 
by satisfying the robot kinematic constraints and new 
wheel locations.

2.1. Mobile Robot Kinematics
In the remainder of this paper an upright circular 

cylinder will serve as the reference climbing surface 
while the robot architecture will be based on a differ-
ential steer system with three wheels; left, right, and 
caster. The left and right wheels are driven by inde-
pendent motors and the caster having a passive revo-
lute joint. The robot under consideration is capable 
of climbing on ferrous surfaces as discussed in [1]. In 
addition, the robot will contain one passive suspen-
sion revolute joint aligned centrally in the longitudi-
nal direction of the robot. A schematic of this robot is 
shown in Figure 2. 

An instantaneous model of the robot is constructed 
with the robot represented as three in-parallel serial 
chains called wheel chains, connecting the robot chas-
sis to the surface. The contact point for each wheel is 
modeled as a spherical connection with ground (pro-
viding an instantaneous pure roll no slip condition) 
and the wheel axle modeled as a revolute.

The suspension member is part of the left wheel 
chain and modeled as another revolute in this chain. 
Similarly, the passive caster joint found in the caster 
wheel chain is also modeled as a revolute. This treats the 
robot as an instantaneous holonomic in-parallel system 
with two 5 degree of freedom (dof) chains for the left 
and caster wheel and a 4 dof chain for the right wheel. 

A series of frames are then defined to represent 
the path from the cylinder inertial frame, {I}, through 
each wheel contact point to the local robot frame, 
{r}, for each of the three wheels labeled L, R and C 
as shown in Figures 2 and 3 with each wheel defined 
through the use of the subscript i. For each wheel, 
the first two frames of the wheel chain are located at 
the contact point, one defined on the climbing sur-
face {Si} and one defined on the robot wheel {Wi}. 
Frames {Si} and {Wi} are defined in a manner allow-
ing the z axis to reside along the outward normal to 
the surface and wheel following the method in [13], 
as shown in Figure 3. Next, a set of frames, from {0i} 
to {4i} for the left and caster wheel (i=L, C) and from 
{0i} to {3i} for the right wheel (i=R) are constructed 
to define the kinematics of each wheel chain. The 
first three frames {0i} to {2i} model the contact point 
instantaneously as a spherical joint assuming no 
slip, the next frame {3i} defines rotation of the wheel 
about its axis, and remaining frames define caster 
rotation {4i}, i=C, and one degree of freedom suspen-
sion {4i}, i=L. Finally, a common frame for the robot, 
{r} is located on the chassis as shown in Figure 3. 
The frames are based on Denavit and Hartenberg 
notation, [19], and are shown in Figure 2 (note an 
extra fixed rotation is required to bring frame {4} for 
the left wheel in alignment with frame {r} of the ro-
bot chassis). The configuration parameters for each 
chain are identified as , for the left and 
caster wheel chains, and  for the right wheel 
chain with as rotations around the z axis using the 
notation defined in [19]. This provides two degrees 
of freedom needed to traverse the non-planar sur-
face. Frame {Si} describes the climbing surface at the 
point of contact of wheel i and is located relative to 
{I} through the transformation,

	 	 (4)

 

 

 

 

 

 

Fig. 2. Differential Steer System Platform and Kinematic Frame Assignments
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an instantaneous kinematic model of the robot is con-
structed assuming a temporary state of no slip. This is 
used to find the relative velocities between the wheels 
and climbing surface for a consistent set of input ve-
locities. Next, a set of first order differential equations, 
called contact equations, are employed to define the 
velocity of the contact points in the wheel and surface 
frames based on these relative velocities. The contact 
equations are integrated in time to update the loca-
tion of the robot on the climbing surface. Finally, the 
robot configuration parameters are updated in time 
by satisfying the robot kinematic constraints and new 
wheel locations.

2.1. Mobile Robot Kinematics
In the remainder of this paper an upright circular 

cylinder will serve as the reference climbing surface 
while the robot architecture will be based on a differ-
ential steer system with three wheels; left, right, and 
caster. The left and right wheels are driven by inde-
pendent motors and the caster having a passive revo-
lute joint. The robot under consideration is capable 
of climbing on ferrous surfaces as discussed in [1]. In 
addition, the robot will contain one passive suspen-
sion revolute joint aligned centrally in the longitudi-
nal direction of the robot. A schematic of this robot is 
shown in Figure 2. 

An instantaneous model of the robot is constructed 
with the robot represented as three in-parallel serial 
chains called wheel chains, connecting the robot chas-
sis to the surface. The contact point for each wheel is 
modeled as a spherical connection with ground (pro-
viding an instantaneous pure roll no slip condition) 
and the wheel axle modeled as a revolute.

The suspension member is part of the left wheel 
chain and modeled as another revolute in this chain. 
Similarly, the passive caster joint found in the caster 
wheel chain is also modeled as a revolute. This treats the 
robot as an instantaneous holonomic in-parallel system 
with two 5 degree of freedom (dof) chains for the left 
and caster wheel and a 4 dof chain for the right wheel. 

 

 

 

 

 

 

where zi and fi represent translation and rotation 
about the z axis of the inertial frame {I}, rc is the ra-
dius of the cylinder, and subscript i refers to the three 
wheels, left, right or caster. Frame {Wi} describes the 
wheel surface at the point of contact of each wheel lo-
cated relative to {Si} through a rotation of ψ about the 
z axis of {Si}:

	 	 (5)

Note that in comparison with reference [18], 
frames {Si} and {Wi} here are defined as outward nor-
mal frames to the surface and wheel bodies. Frame 
{0i} is defined as a fixed rotation relative to {Wi} to 
represent the first joint in the wheel branch having 
an axis parallel to the wheel axis and intersecting the 
contact point:

	 	 (6)

Thus the transformation of each wheel to the iner-
tial frame is given as:

	 	 (7)

Note that this transformation is a function of the 
three parameters, zi, fi, and yi. A set of differential 
equations are constructed to propagate the position 
and orientation of the contact frames forward in time 
in the following manner. The instantaneous kinemat-
ics are used to describe the velocity state of the entire 
system; this yields the instantaneous velocity of frame 
{Wi} with respect to {Si}, for i = L, R, C. The method 
presented by Montana, [18], is used to develop a set 
of differential equations which are used to describe 
the motion of frames {Wi} and {Si}. The parameters, 
zi, fi and, yi are then described as a function of time 

and can be integrated. Finally, the robot configuration 
is updated in time as the wheel contacts move along 
the surface. This update is based on satisfying the 
constraints contained in the instantaneous kinematic 
model. Finally, a strategy to implement this with a ki-
nematic control scheme is presented. 

Returning to the robot kinematics, the length and 
width of the robot is denoted as l and 2b respectively 
and are shown in Figure 2. The wheels are assumed 
toroid in shape (but other shapes could be selected) 
with outer radius ro and inner radius, , with cast-
er offset, c, for the steering wheel. A set of three ho-
mogenous transformations, one associated with each 
wheel chain,  and three Jacobian 
matrices are used to relate the velocity of the robot 
chassis {r} to the configuration state velocity for each 
wheel branch as:

	  	 (8)

where  is the vector of 
joint parameters for wheel branch i=L, R, C with  
containing  for i =L, C, and  containing  for 
i = R, and

	  	 (9)

with ,  the adjoint transformations that proj-
ect velocity in {0R} and {0C} into velocity in {0L}. The 
velocity vr must lie in the column space of JL,  
and  as shown in Equation 8. A singular value 
decomposition is performed on each of these ma-
trices yielding ,  and 

 where the columns of U are the 
left singular vectors of the corresponding Jacobian. 
Each U matrix is further partitioned as  , 

 and  where 
correspond to the zero singular values in each decom-
position, representing the left null space of JL,  
and , and are of size 6×1, 6×2 and 6×1 respec-
tively. This leads to a total of four constraints derived 
from Equation 8 as,

Fig. 3. Cylindrical surface and contact frames
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	 	 (10)

Two components of vr are defined as the allowable 
two dof inputs of the robot (these must be consistent 
with the four constraints) to then solve for vr from the 
four constraint equations. This allows configuration 
velocities , i = L, R, C to be solved making use of the 
Moore-Penrose inverse function as,

	 .	(11)

These equations assume wheel contact locations 
(defined as the coordinates zi and fi, i=L, R, C, Equa-
tion 4) and wheel headings (yi, i=L, R, C, Equation 5) 
are fixed instantaneously and propagated forward 
in time according to a set of differential equations 
governing the contact as defined below. The joint pa-
rameters in the robot (qi) are found by satisfying the 
kinematic model shown in Figure 2 for a given set of 
contact points.

 
2.2 Contact Equations 
The wheel contact locations are propagated forward 
in time using the method presented in [18]. This gives 
a set of differential equations that describe the mo-
tion of contact between the robot wheels and climb-
ing surface. The surfaces are characterized through 
the function f with tangent directions, fu(U) and fv(U) 
the outward normal direction, g(f(U)) at location U 
and the metric M, curvature K and torsion T measures 
can be similarly found at each location U=[u, v]T for 
both the wheel and the surface, [18]:
 
	 	 (12)

	 	 (13)

	 	 (14)

Where , and 
 The contact equations are 

given for the contact point motion on the wheel, 
, and the motion of the contact point on 

the climbing surface,  as

	 	 (15)

	 	(16)

	 	 (17)

where  is the rotation between the wheel and sur-
face frames about the common normal,  is 
the orientation of the wheel frame projected on the 
surface frame as given in Equation 5,  is the cur-
vature of surface relative to the wheel at the point of 
contact given as, 

	 	 (18)

And  the 
relative rotational velocities and 

 due to the no-slip wheel assump-
tions and q(i) is the ith component of vector q. It must 
be noted that the subscript i has been removed in the 
preceding equations, however each operation is per-
formed for each of the three wheels. Equations 15–17 
represent five equations each for the three wheels, 
i=L, R, C or 15 equations in total to solve for the con-
tact point velocities along the wheel and climbing 
surface. The parameters  define the contact pa-
rameters from Equation 4 as:

	 	 (19)

and 
	 	 (20)

where subscript i is removed such that Equations. 
12–20 apply to all three wheels.
 
2.3. Update and Recursion

The kinematic constraints are a function of the 
robot configuration as seen in Equation 10. These 
configuration parameters must be updated with the 
surface geometry as the robot navigates along the 
climbing surface. This procedure begins by updat-
ing the contact point between the wheel and the sur-
face. This is performed for each wheel and is updated 
based on the integration of Equations 19 and 20 and 
assumed coincident with . The locations of these 
contact points on the cylindrical climbing surface are 
described in the inertial frame as, 

	 	 (21)

Two defined inputs, qL(4) and qR(4), are calculated 
from integrating appropriate terms in Equation  11, 
with the remaining 12 configuration parameters in qL, 
qR, and qc determined as the set satisfying the equality 
of the homogenous transformations. These transfor-
mations are used to define the position and orienta-
tion of frame {r} onto the inertial frame {I} for each of 
the three wheel branches,

 
	 	 (22)

It is important to note that several solutions 
should be available in each branch, however the de-
sired solution is closest to the original configuration 
and is expected to remain in a relatively nearby re-
gion. This process is solved numerically using the 
MATLAB FSOLVE function which requires an initial 
guess (previous position).

 
2.4. Kinematic Control

Based on the model given, a control strategy is 
demonstrated based on an incremental control about 
a reference trajectory, [20]. Here, the goal is to drive 
the robot to travel along a specified reference trajecto-
ry defined by tracking an idealized, virtual robot that 
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contact points to the robot frame origin. The time step 
is advanced and the function is implemented at each 
updated time step with the process repeating using 
current velocity inputs. This approach is used in the 
validation and application sections below. 

4. Model Validation
The model is validated first through a comparison 

with a simplified analytical solution and then through 
tests using a lab-based prototype robot. The analyti-
cal comparison proceeds first by evaluating a reduced 
system permitting closed-form solutions to the path 
of the contact point along the climbing surface. The 
reduced system assumes that the robot is perform-
ing a circular move with one wheel, spherical instead 
of toroidal, fixed and the other rotating such that the 
moving wheel is pivoting about a fixed point, yielding 
the following set of differential Equations:

	 	 (31)

	 	 (32)
and

	 	 (33)

returns a desired reference position  
at each update cycle, both described in the inertial 
frame. The current error in position is first deter-
mined in Cartesian coordinates:

 
	  	 (23)

	 	 (24)

and then cast into a coordinate frame that defines the 
error in terms of distance (ρ), direction to reference 
position (α), and direction to reference orientation 
(β).
	 	 (25)

	  	 (26)

	  	 (27)

A linear control scheme is now defined in the ro-
bot local frame as,
	 	 (28)

	 	 (29)

which form the two velocity inputs for vr. As given 
in Siegwart and Nourbakhsh [20], stability of this 
linearized control system is shown to exist when 

 

3. Implementation
The model demonstrated above is implemented 

in MATLAB for simulation and design purposes as 
described in this section. This initial value problem 
is solved via numerical integration using MATLAB’s 
ODE 45 solver. The desired path is defined in one of 
two methods; open loop, specifying desired robot ve-
locity, or closed loop, specifying a desired reference 
trajectory. The geometric parameters for the climbing 
surface and robot wheels are first defined through 
MS, KS, TS, and MW, KW, TW. Second, the initial condi-
tions are then defined for the robot through the initial 
wheel contact locations, , i=L, R, and C, and 
wheel branch configuration vectors qL, qR, qC. The ro-
bot frame velocity (vr) inputs are specified through vx 
and wz, with remaining terms solved through Equa-
tion 10. The configuration parameter velocities are 
solved using Equation 11. The necessary information 
to solve for the contact point velocities is now avail-
able and solved using Equations 15–17. The new 
contact points are updated and used to solve for the 
new configuration state using the MATLAB FSOLVE 
function. This Function solves for a set of parameters 
minimizing the objective F defined as

 	
	 	 (30)

with f    for ma-
trix elements (i, j) = (1,4), (2,4), (3,4), (1,3), (2,3), 
(3,1). This function represents equality between three 
homogenous transformations that connect the wheel 

Fig. 4. Comparing Model over: (A) Large Radius Cylin-
der and (B) Smaller Radius Cylinder
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where , is the length from the pivot 
point to the center of the spherical wheel; with rw 
the wheel radius, rc the surface cylinder radius, and 
b is half the width of the robot as seen from Figure 2 
above. The model above is simulated to execute a path 
in which the contact point of one wheel is held fixed 
while the other travels around it and the results are 
compared with those from the reduced system model. 
This is shown for a robot of dimensions of rw  = 0.05 m, 
b = 0.10 m and over two cylinder sizes, rc = 1e5 m 
(nearly planar, Figure 4a) and rc = 200 m (Figure 4b). 

The comparisons between the two models indicate 
generally good correlation with the analytical results 
with a maximum square error of 1.8e-3 m for the case 
shown in Figure 4b. Discrepancies between the model 
and the reduced solution are in part caused by the as-
sumed spherical wheel on the reduced system. 

The proposed model is now validated with ex-
perimentally-derived data to evaluate its validity. To 
perform the experimental tests, a differential-steer 
mobile robot climbing system is constructed for op-
erating on non-planar surfaces. The robot chassis 

Fig. 5. Prototype Climbing Robot Navigating Cylindrical 
Tank

Fig. 6. Comparison of Model and Prototype Test 

Fig. 7. Evaluating Four Maneuvers on Cylindrical Surface; A) Vertical Path B) Horizontal Path C) Spiral Path D) Circular 
Path
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was 3D printed and contains two magnetic wheels 
and a passive caster wheel providing stability for the 
platform. The two magnetic wheels are mechanically 
coupled to ensure known, equal inputs of the left and 
right drive wheels. The prototype test robot is shown 
in Figure 5 and has kinematic parameters as follows: 
2b = 0.1016 m, l = 0.04445 m, = 0.0254 m. The climb-
ing surface is a cylindrical tank with rc = 0.381 m and 
uniform surface properties leading to consistent fric-
tion characteristics. The prototype of this system was 
developed so that straight line motion along a non-
planar, (cylindrical), surface could be determined and 
compared to model results. The motion of the climb-
ing robot is monitored using an OptiTrack motion 
capture system consisting of eighteen cameras ori-
ented so that the entire testing workspace, (robot and 
climbing surface), is visually monitored. The motion 
capture system can achieve a sub millimeter accuracy 
based on the calibration of the system. This ensures 
measurements are accurate while testing on non-
planar surfaces. The ground plane is located with the 
Z axis aligned with the center of the cylindrical climb-
ing surface and the X and Y plane lying at one end 
of the cylinder. The climbing robot carries reflective 
markers so that its position and orientation are mea-
sured as it traverses the cylindrical climbing surface 
for comparison with the proposed model. The robot 
travels over a portion of the cylinder with equal left/
right wheel velocities (enforced through a mechani-
cal connection) and the results are shown in Figure 6 
which presents and compares three paths as trajec-
tories mapped onto the unwrapped cylinder surface. 
The black path represents the straight line travel that 
would be expected if using a planar model (assumes 
non-planar effects are small) while the red line shows 
the path obtained from the measured experimental 
data. The blue line represents the predicted results 
generated from the model using known robot and 
surface parameters. Figure 6 clearly shows that the 
planar assumption is not valid for this example and 
shows a strong correlation between the model and ex-
perimental data. It should be noted that the cylindri-
cal surface had some feature defects (pitting, which 
was not considered in the model) and this caused the 
discontinuities in the experimental data. The results 
of this experimental comparison indicate the model 
is a useful predictive tool in the estimation of robot 
trajectory on cylindrical climbing surfaces.

5. Application
Using the model defined above, a series of robot 

maneuvers are considered on the cylindrical climb-
ing surface. The first case considers four maneuvers 
that represent paths common for welding or inspec-
tion tasks. The second case demonstrates potential ef-
fects on a simulated path due to a change in the scale 
between the cylinder radius (rc) and robot size (b). 
The final case demonstrates use of kinematic control 
to follow a predefined path. In all cases, the applica-
tion results are demonstrated as paths traced by the 
contact point (of one or more robot wheels) on the 
climbing surface.

 

Case 1: Robot Maneuvers on a Cylindrical Climbing 
Surface

The first case considers four different maneuvers 
of the robot on a single cylinder shown in Figure 7 a-d. 
Each maneuver is defined as set of constant, open-
loop kinematic commands defined in the robot frame. 
With ratio of the surface curvature to half the width 
of the robot, (rc/b), of 20. Figure 7 displays the paths 
of the Left, Right and Caster Wheel contact locations 
on the cylindrical climbing surface. The first maneu-
ver, Figure 7a, directs the robot to operate vertically 
along the cylinder with the second maneuver directed 
horizontal (around the circumference of the cylin-
der, Figure 7b). Next, the robot performs maneuvers 
while oriented 45º from the surface, Figure 7c. The 
final maneuver yields a circular path by operating at 
a constant and nonzero linear and angular velocity, 
Figure 7d.

Case 2: Robot Maneuvers on Cylinders of Varying 
Radius

The second case demonstrates the potential ef-
fects of the non-planar surface on the robot path. This 
is considered by observing a generally circular path 
performed on varying cylinder sizes. The size of the 
cylindrical climbing surfaces ranges from essentially 
planar (large radius) to small (radius approaching 
robot width). This is performed by varying the scale 
between the cylinder radius (rc) and the width of the 
robot (2b). The velocity inputs are selected for this 
maneuver providing a contractible closed-path as 
shown in Figures 7d and 8. Figure 8 displays theses 
maneuver performed on cylinders of radius varying 
from rc = 2e5 m, 2e2 m, and 0.5e2 m. The results are 
presented as a planar sheet produced by unwrapping 
the cylinder surface which displays as the cylinder ra-
dius decreases, the paths remain closed but becomes 
increasingly oblong.

Case 3: Robot Maneuvers Using Kinematic Control
The third case considers kinematic control for 

three maneuvers considered common in manufactur-
ing environments. A ratio, surface curvature to half 
the width of the robot (rc/b), of 20 was utilized for 
testing this method of control. These tasks are rep-

Fig. 8. Robot Paths for a Circular motion over Cylinders 
of Varying Radii
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resentative of welding along an uneven surface and 
generally result in a path resembling a triangular, 
diamond or square. The paths generated in this sec-
tion are guided by means of a kinematic controller to 
navigate along a specified path. The results are shown 
in Figures 9a–c, representing each wheel path and 
demonstrating the model is able to generally follow 
the desired path. The model results in closed-paths 
indicating its robustness and suitability to the chosen 
numerical integrator. 

6. Discussion and Conclusion
The method discussed in this paper is used to 

evaluate mobile robot trajectory when moving over 
an uneven surface. Geometric representations of the 
contact point between two surfaces yield a set of ordi-
nary differential equations and when combined with 
kinematic constraints these equations are solved 
in an iterative manner to describe the robot mo-
tion. The method is applied to a cylindrical climbing 
surface and a platform modeled as a three-wheeled 
differential-steer robot with toroid-type wheels. The 
objective of this work is to provide the groundwork 
for kinematic path planning of mobile robots that tra-
verse known surfaces in order to perform manufac-
turing tasks such as inspection and welding.

The method constructed satisfies the no-slip con-
straints, (vx = vy = 0), which are assumed to be zero 
for this particular robot model. A set of kinematic 
constraints are developed using Equation 8 and are 
used to solve for the velocity of the robotic platform, 
(vr). Once the robot velocity is determined the joint 
velocities are then determined using Equation 8. The 
no-slip assumption combined with the joint veloci-
ties allow the implementation of Equations 15–17, 
[18], allowing for updated contact points on the 
climbing and wheel surfaces. Equations 15–17 also 
provide an updated orientation of the wheel frames 
relative to the surface frame. The model formulation 
satisfies similar constraints as seen in, [14]; however 
the current model prescribes the velocity vector at 
the geometric center of the robot, in the robot frame, 
with the kinematic constraints stated in terms of this 
velocity. The model was validated through numeric 
as well as experimental testing. The numerical evalu-
ation is performed using a simplified analytical rep-
resentation of the model expressed using Equations 
31–33. The results of this comparison (Figure 4 a–b) 
show the model consistently represents a purely 

circular path for larger radius climbing surface and 
paths that are oblong in nature for smaller radius 
cylinders. The model was additionally validated 
through empirical testing with a differential steer 
robot climbing on a small cylindrical tank. The em-
pirical tests and corresponding model applications 
clearly show the significance of curvature on robot 
kinematic position estimates as the cylinder radius 
is reduced relative to the size of the robot. When con-
sidering a non-dimensionalized ratio of the surface 
curvature to half the width of the robot, (rc/b), op-
erational conditions in which the curvature to robot 
ratio is 15 or less show noticeable error when rely-
ing on the planar assumption. This is observed in 
application case two in which a robot operating on 
a smaller radius cylinder (surface curvature to robot 
ratio of 13.3) demonstrates a noticeable departure in 
the predicted path when compared with a planar-as-
sumption (surface curvature to robot ratio of >500). 
This is similarly observed in the empirical example, 
here where a small robot on a small tank (surface 
curvature to robot ratio of 7.5) operates with a nomi-
nal straight line input where both wheels are driven 
at an equal constant speed, but travels along a path 
that is a curved line when viewed on the unwrapped 
surface of the tank. 

The non-planar kinematic model can be used 
to improve robot kinematic estimates for applica-
tions in which the surface curvature to robot ratio 
is at or below a certain threshold. The model can be 
implemented as part of a kinematic control scheme, 
as shown in application case three, to track desired 
trajectories on curved surfaces. This example dem-
onstrates an open-loop implementation of the kine-
matic control law relying on the non-planar kinemat-
ic model for current estimates of the robot position 
on the cylinder surface. This non-planar kinematic 
model could also be combined with external sensing 
capabilities as an improved prediction step to enable 
improved performance when performing manufac-
turing tasks on non-planar surfaces.
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Fig. 9. Demonstrating Closed loop control over. A) Triangular Path, B) Square Path, C) Diamond Path
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