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1. Introduction and literature survey

Many maintenance strategies, policies and methods have been de-
veloped, which are aimed at making maintenance cheaper and more 
effective. Such programs have the minimization of costs, downtime 
and losses due to failure of critical objects of the equipment as their 
main objective. Cost minimization improves the effectiveness and 
profitability of the organization [1, 2, 9, 12, 13, 20]. 

For creation of the maintenance policies, well described data min-
ing input is very important. [4]. 

In recent years, useful models of preventive and predictive main-
tenance optimization with different complexity and applicability have 
been further developed.

In the paper, [5] the authors proposed a quasi-periodic imperfect 
preventive maintenance policy. Finally, a real case study of preventive 
maintenance on Chinese diesel locomotives is examined to illustrate 
the proposed maintenance policy.

The paper [6] proposes an approach in which preventive and fail-
ure replacement costs as well as inspection cost are taken into account 
to determine the optimal replacement policy and an age-based inspec-
tion scheme, such that the total average costs of replacements and 
inspections is minimized.

Determination of the preventive effect of optimal replacement 
policies in the paper [8] is based on aging intensity and the cost ratio 
of failure and preventive replacements. One of its conclusions is that 

not every preventive maintenance is fully effective and a policy of, 
“run to failure” can be more effective (note: in some cases).

The proposed model in the paper [10] takes into consideration the 
stochastic nature of equipment failures. The output from the model 
is a cost distribution against the time from which the minimum cost 
may be found for a particular period and this period is defined as the 
optimum lifespan of the machine part.

The paper [11] considers periodic preventive maintenance poli-
cies for a deteriorating repairable system. On each failure, the system 
is repaired and, at the planned times, it is periodically maintained to 
improve its performance reliability. Most periodic preventive main-
tenance (PM) models for repairable systems have been studied as-
suming that the failure process between two PMs follows the nonho-
mogeneous Poisson process (NHPP), implying the minimal repair on 
each failure.

The paper [14] regarding warranty policy considering three main-
tenance options for products with multiple failure modes also showed 
the broad usability of the Weibull distribution. This fact supports the 
decision of the authors to also use the Weibull function.

The paper [15] presents a new mathematical function to model an 
improvement based on the ratio of maintenance and repair costs, and 
demonstrate how it outperforms fixed improvement factor models by 
analyzing the effectiveness in terms of cost and reliability of a system. 
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Autorzy przedstawiają metodę określania optymalnego czasu przerwy na okresową konserwację zapobiegawczą oraz optymal-
nego parametru diagnostycznego dla konserwacji predykcyjnej/wymiany Dodatkowo, autorzy zadają pytanie, jaki jest wpływ 
konserwacji zapobiegawczej na prawdopodobieństwo wystąpienia uszkodzenia oraz na niezawodność eksploatacyjną elementów 
systemu, w stosunku do których zastosowano okresową konserwację zapobiegawczą. Odpowiedzi na te pytania, autorzy poszukują 
posługując się metodami analizy i symulacji komputerowej. Wyniki podane w formie ilościowej, informują o związkach między 
przerwami na konserwację predykcyjną a funkcjami niezawodnościowymi. Podane przykłady pokazują, z wykorzystaniem trójpa-
rametrowego rozkładu Weibulla, że proponowana metoda może być stosowana w przypadku typowych obiektów inżynieryjnych. 
Zastosowanie omawianej metody przynosi znaczące korzyści zarówno wytwórcom jak i użytkownikom sprzętu technicznego.

Słowa kluczowe: konserwacja zapobiegawcza, konserwacja predykcyjna, optymalizacja przerw konserwacyj-
nych, doskonalenie niezawodności.
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It determines the optimal preventive maintenance and replacement 
schedule of the system.

The paper [16] takes into account degradation modeling and 
maintenance policy for a two-stage degradation system, which deg-
radation process is nonlinear and degradation rate is change over time 
in both stages. Influence analysis of different model parameter and 
maintenance policy is studied in numerical examples with results that 
the proposed optimal maintenance policy can help to reduce the mean 
cost rate.

In the paper, [17] the authors proposed a hybrid imperfect main-
tenance model with random adjustment-reduction parameters and a 
maintenance policy. Furthermore, a numerical example and an exam-
ple of the fuel injection pump of diesel engines are carried out and 
presented to illustrate the proposed method.

A mathematic model of optimization of maintenance intervals 
having regard to the risk is presented in the paper [18]. Precise calcu-
lations were made for steam turbines that operate in power units.

Maintenance can represent a significant portion of the cost in as-
set intensive organizations, as breakdowns have an impact on the ca-
pacity, quality and cost of operation [21]. However, the formulation of 
a maintenance strategy depends on a number of factors, including the 
cost of down time, reliability characteristics and redundancy of assets. 
Consequently, the balance between preventive maintenance (PM) and 
corrective maintenance (CM) for minimizing costs varies between or-
ganizations and assets. Nevertheless, there are some rules of thumb on 
the balance between PM and CM, such as the 80/20 rule.

In the paper [22], an approach is presented, which allows evalu-
ation of various possible maintenance scenarios with respect to both 
reliability and economic criteria. Authors included three deterioration 
states (D1 ÷ D3) and three repairs: minor (index = 1), medium (2) and 
major (3), but in real machine operation it is difficult to define these 
general states and repairs exactly.

In the paper [23] a double-fold Weibull competing risk model us-
ing the real failure data from railway operation, was developed for the 
engine system of a diesel locomotive and its current maintenance. Re-
sults show that the maintenance period varies widely between winter 
and summer, and that optimized maintenance can increase the avail-
ability and decrease cost more than the existing policy. 

The paper [7] is a very large review on machinery diagnostics 
and prognostics implementing condition-based maintenance using 
271 references and other reviews in the paper [19] using 104 refer-
ences which point to future perspectives on maintenance optimiza-
tion. These two references [7, 19] fully support the authors method, 
from data collection through data processing to optimal maintenance 
decision making.

These references proposed interesting models regarding concrete 
application on particular technical systems with different structures 
and as well a general solution. The authors did not find in the review, 
a simple model of predictive maintenance optimization for industrial 
practice and no idea that preventive maintenance improves reliabil-
ity including utilization of a three parameters Weibull distribution.  
According to authors’ experiences from different fields of industry, 
maintenance managers need simple and general methods for design of 
maintenance programs and policies optimization. Therefore, the ob-
jective of this paper is to contribute to the optimization of predictive 
maintenance with a new simple semi-stochastic model. A further ob-
jective was to give maintenance staff evidence that preventive mainte-
nance improves operational reliability based on a mathematical theory 
of reliability [1, 20] and authors works [9, 12, 13]. Finally, all models 
are demonstrated using numerical simulation with a three parameters 
Weibull distribution supported by table processor Excel.

2. Optimization of predictive maintenance

In discussing machine maintenance strategy, it is customary to 
distinguish between the following methods (policies) [3]:

corrective maintenancea)  - maintenance carried out after fault 
recognition and intended to put an item into a state in which it 
can perform a required function,
preventive maintenance -b)  maintenance carried out at predeter-
mined intervals or according to prescribed criteria and intended 
to reduce the probability of failure or the degradation of the 
functioning of an item; following policies c), d) and e) are also 
preventive maintenance,
predetermined maintenancec) , preventive maintenance carried 
out in accordance with established intervals of time or number 
of units of use but without previous condition investigation,
condition based maintenanced)  - preventive maintenance which 
includes a combination of condition monitoring and/or inspec-
tion and/or testing, analysis and the ensuing maintenance ac-
tions; the condition monitoring and/or inspection and/or testing 
may be scheduled, on request or continuous,
predictive maintenancee)  - condition based maintenance car-
ried out following a forecast derived from repeated analysis or 
known characteristics and evaluation of the significant param-
eters of the degradation of the item. 

The proposed model of predictive maintenance optimization is 
based on minimization of unit maintenance, diagnostics and failure risk 
cost c(Sp) of a component [1]:

 
· ppr f

p d
p

C  + L F( )S
c( ) =  + S c

t( )S
 (1)

where Sp is a diagnostic signal for predictive maintenance; diagnostic 
signal is allowed to be a random variable, Cpr is cost of preventive 

maintenance, Lf is loss due to failure risk ( · pfL F( )S ); loss due to 
failure risk can be calculated as a difference between cost of corrective 
maintenance and cost of preventive maintenance, it means Lf=Ccm - 
Cpr, F(Sp) is probability of failure depending on diagnostic signal Sp, cd 
denotes unit costs of condition monitoring to obtain diagnostic signal 
Sp,t(Sp) is the mean time corresponding to diagnostic signal Sp, which 
can be determined from operational data using the formula:

 
p p m( )  n-m( )S S
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1t( ) = S t S t S
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where ti(Sp) denotes the operating time of the ith object surviving at 
the level Sp, tj(Sp) denotes the time to failure of the jth object which 
failed before reaching the state Sp, m(Sp) is the number of objects 
reaching state Sp without failure and n is the total number of objects 
in the investigated population. To obtain these data it is necessary to 
carry out an operational observation – life test of objects population 
including on-line diagnostic measurement till failure or at least diag-
nostic signals Spf closely before failure occurs. In the first case, it is 
easy to apply equation (2) and probability of failure (distribution func-
tion) F(Sp) can be obtained by means of diagnostic signals Sp shortly 
before failure. If there are only recognized diagnostic signals (techni-
cal states) closely before failures, it is necessary to calculate operat-
ing time related to selected diagnostic signal Sp which is used as an 
indicator for predictive maintenance of an object. 

For calculation of mean operating time, versus diagnostic signal 
for predictive maintenance ( )pt S , authors use a simplified model in 
which the technical state degradation (a change of diagnostic signal) 
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runs along a straight line from start state pzS  to limit value of techni-
cal state (to failure) pfiS  i-th object. The accuracy of this approxima-
tion from point of technical solution is sufficient. Calculation of the 

( )i pt S  is carried out in a case of the piS  < pfiS  according to equation 
(3):

 ( ) ( ) ,pi pz
i p i pfi

pfi pz

S S
t S t S

S S
−

=
−

 (3)

If pj pfjS S≥ , the operating time to failure of the jth object which 
failed before reaching the diagnostic signal Sp, we can read directly 
from the database of operating time to failure of the jth object which 
failed before reaching the diagnostic signal pjt ( )S . Interpretation of 
these input data is clear from Fig. 1.

Unit costs of preventive maintenance and failure risk versus diag-
nostic signal for predictive maintenance and optimal diagnostic signal 
for predictive maintenance Spo (for ( )pc S = minimum) we can calcu-
late, using equation (4):

( ) ( )
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n

−
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  (4)

For a proposed model of predictive maintenance optimization (4) 
it is necessary to obtain or calculate input data as follows:

cost of preventive maintenance a) Cpr
losses due to failure risk b) Lf 
probability of failure versus diagnostic signal for predictive main-c) 
tenance F(Sp)
mean operating time versus diagnostic signal for predictive main-d) 
tenance pt( )S
unit cost of diagnostics (condition monitoring)e)  cd
diagnostic signal for predictive maintenancef)  Sp,

Optimal predictive dispositional operating time td(Spo) from actual 
operating time ( )t S  in decision making state to optimal operating time 

( )pot S  for predictive maintenance (restoration, replacement) is calcu-
lated from equation

 
( ) ( ) ( )d po pot S t S t S= −  (5)

3. Calculation of mean life and reliability functions of 
preventive predetermined maintained objects

If we should prove that preventive predetermined maintenance 
increases operational reliability, we must calculate reliability function 
of object predetermined maintained in operating time tp and its mean 
life ET of preventively predetermined maintained objects in time tp 
comparing with corrective maintenance of the same object.

Let us monitor a series of objects that underwent preventive pre-
determined maintenance (were replaced) after time interval tp using a 
new object with the same reliability properties. Also, let us suppose 
that its durability is characterized by a random variable X with a con-
tinuous density function f and distribution function F.

Object reliability can be improved during operation by preventive 
predetermined replacement at time tp. Durability of k-th component is 
also described by a random variable Xk with the same density function 
f and distribution function F. We suppose that random variables X1, 
X2,…are independent.

Let us denote by T a random variable which describes the life 
of preventively predetermined replaced objects. Further, we derive 
the formula of the density function fT and the distribution function fT 
for the random variable T. We are particularly interested in the mean 
value ET.

Let us denote p = P[Xk < tp], q = P[Xk ≥ tp] = 1 – p and 

I = 
0

( )
t p

xf x∫ dx. We express the random variable T using Xk in the fol-

lowing way:
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With respect to independence X1, X2, ..., from the total probability 
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Further, we calculate according to the definition of conditional 
probability with respect to the independence of X1, X2, …
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Fig. 1. Principle of input data determination for calculation of mean operat-
ing time versus diagnostic signal for predictive maintenance ( )pt S
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After substitution (7) into equation (6) we obtain:

[ ] 1 p p p p
0 0

( ) min(x kt , t ) (min(x kt , t ))k k
T k

k k
F x P T x P X Fq q

∞ ∞

+
= =

 = < = < − ⋅ = − ⋅ ∑ ∑

It is possible to itemize the distribution function FT around the 
following intervals:

( ) ( )
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Last, using a modified equation (8), we calculate the failure prob-
ability FT(t) and the reliability function RT(t) for the components that 
underwent preventive predetermined maintenance:

FT(t) = F(tpo ) + R(tpo )F(t − tpo ) + R2(tpo )F(t − 2tpo ) +  R3(tpo )F(t −3tpo ) + … (9)

and

 RT(t) = 1 – FT(t) (10)

We obtain density function fT  by differentiation of FT:
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Finally, we calculate the mean value of life (sum of particular 
operating time) for objects that underwent preventive predetermined 
replacement:

( 1)

00
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we have used the formula for the sum of the geometrical series 1 + q + 
q2 + ... +qk + ... =1 / (1 − q) and from this formula through differentia-
tion we have obtained the derived formula 

1 + 2q + 3q2 + ... + kqk-1 + ... = 1 / (1−q)2.

Integral I can be modified using integration by parts:
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where R(x) = 1 − F(x) is reliability function. 
For mean value ET of the life of preventively predetermined 

maintained objects at time tp we obtain the following equation:

 0

0

( )1 ( )
( ) 1 ( )

tt pp

pp

R x dx
ET R x dx

F t R t
= =

−
∫

∫   (14)

From equation (14) it is clear that mean life of preventive prede-
termined maintained objects ET > 

0
( )R x dx∞

∫  (mean life of corrective 
maintained objects) for tp<<∞. This fact proves that preventive pre-
determined maintenance increases operational reliability of objects 
comparing with corrective maintenance.

Optimal value of operating time to predetermined maintenance tpo 
[1] it is possible to calculate from equation (15) which is analogical to 
equation (1) and (4) and using three parameters Weibull distribution 
function, we obtain:
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For solution of equation (14) and (15) it is possible to use a nu-
merical method, e.g. to use MS Excel.

4. Numerical solution
We have simulated the life tf of 44 objects to failure and their tech-

nical state (diagnostic signals) Sf shortly before failure, including costs 
and losses. Value of diagnostic signal may represent the ratio of a two 
values of variable, therefore, the value presented by diagnostic signal is a 
dimensionless number. There were obtained input data – see Table 1.

Using input reliability and economic data regarding life time tf 
from Table 1 and software http://wessa.net/rwasp_fitdistrweibull.
wasp we obtained mean operating time to failure (MOTTF), standard 
deviation (SDt) and parameters αt, βt and γt of the Weibull distribution 
function – see Table 2.

Using input reliability data regarding technical state (diagnos-
tic signal) Sf from Table 1 and software http://wessa.net/rwasp_fit-
distrweibull.wasp, we obtained average diagnostic signal (technical 
state) fS , standard deviation (SDS) and parameters αS, βS and γS of 
the Weibull distribution function – see Table 3.

Fig. 2. Dependency of unit costs of preventive maintenance and unit costs of 
failure risk c(tp) versus operating time to preventive predetermined 
maintenance tp
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Table 1. Simulated input data – life tf and diagnostic signal Sf closely before failure including costs

Object Nr. 1 2 3 4 5 6 7 8 9 10 11

tf (h) 501 635 727 753 799 941 988 995 1012 1087 1111

Sf 3.01 3.07 3.09 3.10 3.13 3.16 3.18 3.19 3.20 3.21 3.22

Object Nr. 12 13 14 15 16 17 18 19 20 21 22

tf (h) 1125 1163 1194 1199 1205 1210 1223 1238 1245 1256 1277

Sf 3.23 3.24 3.25 3.26 3.27 3.28 3.28 3.29 3.29 3.40 3.40

Object Nr. 23 24 25 26 27 28 29 30 31 32 33

tf (h) 1298 1356 1375 1399 1410 1447 1492 1512 1544 1588 1625

Sf 3.41 3.43 3.46 3.47 3.48 3.49 3.49 3.50 3.52 3.53 3.55

Object Nr. 34 35 36 37 38 39 40 41 42 43 44

tf (h) 1678 1739 1749 1763 1799 1832 1979 2030 2213 2375 2700

Sf 3.57 3.58 3.59 3.60 3.62 3.65 3.69 3.72 3.79 3.85 3.97

Costs of preventive maintenance Cpr (EUR) 10,000

Costs of corrective maintenance Ccm (EUR) 21,000

Production losses due to failure and following down time Lf (EUR) 11,000

Unit costs of condition monitoring cd (EUR/h) 1.2

Table 2. Parameters of the Weibull distribution function – MOTTF, SDt, αt, βt and γt

MOTTF (h) Standard deviation SDt (h) Shape parameter  
αt

Scale parameter  
βt

Location parameter 
γt

MTTF t
t

t= + +β
α

γ· ( )Γ
1 1

Γ is Gama function

SDt t
t t

= + − +β
α α

Γ Γ( ) ( )2 1 1 1 2

Γ is Gama function
1.823 971.465 500

1363.39 490.56

Table 3. Parameters of the Weibull distribution function – fS , SDS, αS, βS and γS

Mean value fS Standard deviation SDS Shape parameter 
αS

Scale parameter 
βS

Location parameter 
γS

S f S
S

S= + +β
α

γ· ( )Γ
1 1

Γ is Gama function

SDS S
S S

= + − +β
α α

Γ Γ( ) ( )2 1 1 1 2

Γ is Gama function
1.825 0.450 3.00

3.4 0.227

Table 4. Unit costs of preventive maintenance and failure risk versus operating time (period) of preventive predetermined maintenance (optimal data are 
formatted bold)

tp (h) 1,000 1,020 1,040 1,060 1,077 1,100 1,120 3,500

c(tp) (EUR/h) 13.486 13.465 13.451 13.444 13.442 13.445 13.452 15.400

Table 5. Unit costs of predictive maintenance, diagnostics and failure risk versus diagnostic signal for predictive maintenance (optimal data are format-
ted bold)

Sp (-) 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

pt( )S (h) 732.0 930.1 1,075.2 1,186.3 1,275.3 1,328.8 1,355.7 1,370.8

c(Sp) (EUR/h) 15.182 12.753 11.861 11.592 11.613 11.937 12.445 12.999
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Unit costs of preventive maintenance and failure risk 

L
t

f
p t

t

t·( exp( ( ) )1− −
− γ

β
α  versus operating time (period) of preven-

tive predetermined maintenance we can calculate by means of equation 
(15) –see some results in Table 4 and on Fig. 2.
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Now we can calculate optimal diagnostic signal (technical state) for 
restoration Spo using equation (4) substituting Weibull distribution func-
tion to equation (16) and by application MS Excel, we can calculate unit 
costs c(Sp) of preventive maintenance, diagnostics and failure risk versus 
diagnostic signal for predictive maintenance, optimal diagnostic signal 
Spo (technical state) for restoration and mean operating time versus diag-
nostic signal for predictive maintenance  

( )pt S  = 
( ) ( )

1 1

1 ( ) ( )
p pm S n m S

i p j p
i j

t S t S
n

−

= =

 
 +
  
∑ ∑ – see Table 5 and Fig. 3. 

Knowledge of optimal diagnostic signal Spo (see Fig. 3) is very im-
portant for the design of predictive maintenance. We can very easily in-
dicate dispositional operating time )( pod St  according to equation (5) to 
be able to plan the maintenance of an object.

Now we use MS Excel to compute mean life ET of the objects 
that have undergone preventive maintenance after the optimal interval  
tpo = 1,076.7 hours (according to the equation (15)) by the Weibull 
distribution function with parameters αt, βt and γt using numerical 
method of R(t) integration. 
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∫ ∫( )

( )

( ( ) )

exp(

0
1

1

γ
γ

βγ
α

t
t 

t

−−

=
−
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−

( ) )po tt γ α

β

1,076.72
0.6795

3,359.4
1

 hours

(17)

Numerical calculation (for the Weibull distribution function with 
parameters αt = 1.823, βt = 971.466 and γt=500) of RT(t) is done ac-
cording to equations (9) and (10) and of R(t) is done according to 
equation (18) – see Fig. 4. 

 R t t t

t

t( ) exp( ( ) )= −
− γ
β

α  (18)

From this figure it is clear that the object with predetermined mainte-
nance has a much better reliability function RT(t) than the same object 
maintained after failure (reliability function R(t)).

5. Conclusion

Authors offer a tool for maintenance managers which represents 
general methods of calculating the optimal interval for predetermined 
maintenance and the optimal diagnostic signal for predictive mainte-
nance/replacement – equations (1) and (15). Further, the authors de-
duced equations for mean life and probability reliability function of 
predetermined maintained machine objects and equations for predic-
tive maintenance optimization – equations (10), (12) and (14). Au-
thors proof that preventive maintenance improves reliability. From 
equation (14) it is clear that mean life of preventive predetermined 

maintained objects ET > R x dx( )
0
∞
∫  (mean life of corrective main-

tained objects) for tp<<∞. Numerical solution presented graphically 
on Fig. 4 also shows that reliability of preventive predetermined 
maintained objects decreases more slowly than the reliability of ob-
jects which are running to failure.

The example shows an application of the proposed mathematical 
model on a virtual machine object. When we replace the component 
after failure, the MOTTF = 1,363 hours and production losses due to 
the failure risk Lf = 11,000 EUR and unit costs of preventive mainte-
nance and failure risk, then c(MOTTF) = 15.4 EUR/hour. When we 
introduce predetermined maintenance (for tpo = 1,077 hours) of the 
object, the MOTTF increases to ET = 3,360 hours and unit costs of 
preventive maintenance and failure risk decrease to 13.4 EUR/hour – 
see Fig. 2 and Fig. 4. 

When we introduce predictive maintenance on the same object 
using the derived equation (16), we obtained optimal diagnostic sig-
nal Spo = 3.4 and unit costs c(Spo) = 11.6 EUR/hour. If we compare 
these unit costs with unit costs of periodic maintenance (c(tpo) = 13.4 
EUR/hour), we see that this predictive maintenance strategy brings 
economical effect of 1.8 EUR/hour. We can see the comparison of all 
results of the example of chosen maintenance policies from Table 6. 

Fig. 3. Dependency of unit costs of preventive maintenance, diagnostics and 
failure risk versus diagnostic signal of predictive maintenance Sp

Fig. 4. Reliability functions R(t) (object is running to failure without 
preventive maintenance) and RT(t) (preventive predetermined 
maintained object) versus operating time
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The best maintenance policy from point of unit costs for this example 
is a predictive maintenance.

The benefit of the proposed mathematical models is not only the 
ability to compute the optimal interval of predetermined maintenance 
and optimal diagnostic signal for predictive maintenance, but also to 

provide quantitative proof that preventive predetermined maintenance 
increases operational reliability of machine objects. The decision lies 
with maintenance specialists, whether or not they adopt and apply 
these models and methods for improving maintenance effectiveness 
of industry production equipment.

Table 6. Comparison of all results of maintenance policies from the example

Maintenance policy Diagnostic signal (h, -) Unit costs (EUR/h)

Corrective maintenance tp →∞ c(tp →∞) = 15.4

Predetermined maintenance tpo = 1.077 c( t )po  = 13.4

Predictive maintenance Sdo = 3.4 c( S )p  = 11.6
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