PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties and energy of sandstone under cyclic loading in evolutionary pattern experimental studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to explore the mining failure law of deep coal seam floor and clarify the mechanical behavior and energy change in the floor strata during mining, the mechanical properties and energy evolution law of sandstone under cyclic loading with different confining pressures (20, 30, 40 MPa) were studied using the Rock Top multi-field coupling tester. The results are as follows: (1) the hysteresis phenomenon of a rock stress-strain curve under cyclic loading is evident. Moreover, the hysteresis loop migrates to the direction of strain increase, and the fatigue damage caused by cyclic loading has a certain weakening effect on the peak strength of rock; (2) both the number of cycles and the axial strain show a nonlinear change characteristic that satisfies the quadratic function relationship. Among them, the stress level of the rock is the main factor affecting the fitting effect; (3) under the same confining pressure, with an increase in cycle level, the macroscopic deformation of the rock increases, the accumulation of fatigue damage in the sample increases, and the irreversible deformation of the rock increases, which leads to an increase in energy input and dissipation; (4) in terms of elastic energy and dissipation energy, elastic energy plays a dominant role. In the initial cycle, the rock is destroyed, and the rock energy loss is great. After the second cycle, the input energy is mainly stored in the rock in the form of elastic energy, and only a small part of the input energy is released in the form of dissipation energy; (5) the confining pressure can improve the efficiency of rock absorption and energy storage, enhance the energy storage limit of rock, and limit the dissipation and release of partial energy of rock. The greater the confining pressure, the more evident the limiting effect, and the more significant the dominant position of elastic energy; and (6) the change in the energy dissipation ratio can be divided into three stages: rapid decline stage, stable development stage and rapid rise stage. The greater the increase in dissipation energy, the greater the degree of rock damage. The evolution process of the energy dissipation ratio can reflect the internal damage accumulation process of rock well, which can be used as the criterion of rock instability.
Rocznik
Strony
351--370
Opis fizyczny
Bibliogr. 52 poz., fot., tab., wykr.
Twórcy
autor
  • Shandong University of Science and Technology, National Key Laboratory for Mine Disaster Prevention and Control, Qingdao, Shandong 266590, China
autor
  • Shandong University of Science and Technology, National Key Laboratory for Mine Disaster Prevention and Control, Qingdao, Shandong 266590, China
autor
  • Shandong University of Science and Technology, National Key Laboratory for Mine Disaster Prevention and Control, Qingdao, Shandong 266590, China
autor
  • Shandong University of Science and Technology, National Key Laboratory for Mine Disaster Prevention and Control, Qingdao, Shandong 266590, China
autor
  • Shandong University of Science and Technology, National Key Laboratory for Mine Disaster Prevention and Control, Qingdao, Shandong 266590, China
autor
  • Shandong University of Science and Technology, National Key Laboratory for Mine Disaster Prevention and Control, Qingdao, Shandong 266590, China
Bibliografia
  • [1] H.P. Xie, Research review of the state key research development program of China: Deep rock mechanics and mining theory. Journal of China Coal Society 44 (05), 1283-1305 (2019). DOI: https://doi.org/10.13225/j.cnki.jccs. 2019.6038.
  • [2] H.P. Xie, F. Gao, Y. Ju, M.Z. Gao, R. Zhang, Y.N. Gao, J.F. Liu, L.Z. Xie, Quantitative definition and investigation of deep mining. Journal of China Coal Society 40 (01), 1-10 (2015). DOI: https://doi.org/10.13225/j.cnki.jccs.2014.1690.
  • [3] M.C. He, H.P. Xie, S.P. Peng, Y.D. Jiang, Study on rock mechanics in deep mining engineering. Chinese Journal of Rock Mechanics and Engineering 24 (16), 2803-2813 (2005).
  • [4] Y. Zhao, H.W. Zhou, W.G. Ren, J.C. Zhong, D. Liu, Permeability evolution of roof sandstone at deep coal seam working face under cyclic loading. Journal of China Coal Society 44 (05), 1495-15 (2019). DOI: https://doi.org/10.13225/j.cnki.jccs.2019.6005.
  • [5] J.W. Zhang, W.B. Fan, W.M. Niu, S.Y. Wang, Energy evolution characteristics of deep sandstone with different true triaxial stress paths. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 8 (2), 62 (2022). DOI: https://doi.org/10.1007/s40948-022-00374-6.
  • [6] H. Wagner, Deep Mining: A Rock Engineering Challenge. Rock Mechanics and Rock Engineering 52 (5), 1417-1446 (2019). DOI: https://doi.org/10.1007/s00603-019-01799-4.
  • [7] H.P. Song, Z, Hao. D.H. Fu, Q. Zhang, Experimental analysis and characterization of damage evolution in rock under cyclic loading. Inter-national Journal of Rock Mechanics & Mining Sciences 88, 157-164 (2016). DOI: https://doi.org/10.1016/j.ijrmms.2016.07.015.
  • [8] H.P. Xie, C.B. Li, M.Z. Gao, R. Zhang, F. Gao, J.B. Zhu, Conceptualization and preliminary research on deep in situ rock mechanics. Chinese Journal of Rock Mechanics and Engineering 40 (02), 217-232 (2021). DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0317.
  • [9] H.P. Xie, R.D. Peng, Y. Ju, H.W. Zhou, On energy analysis of rock failure. Chinese Journal of Rock Mechanics and Engineering 15, 2603-2608 (2005).
  • [10] Y.F. Wang, F. Cui, Energy evolution mechanism in process of Sandstone failure and energy strength criterion. Journal of Applied Geophysics 154, 21-28(2018). DOI: https://doi.org/10.1016/j.jappgeo.2018.04.025.
  • [11] M. Hasan, Y.J. Shang, P. Shao, X.T. Yi, H. Meng, Evaluation of Engineering Rock Mass Quality via Integration Between Geophysical and Rock Mechanical Parameters. Rock Mechanics and Rock Engineering 55 (4), 2183-2203 (2022). DOI: https://doi.org/10.1007/s00603-021-02766-8.
  • [12] H.R Renani, M. Cai, Forty-Year Review of the Hoek-Brown Failure Criterion for Jointed Rock Masses. Rock Mechanics and Rock Engineering 55 (1), 439-461 (2021). DOI: https://doi.org/10.1007/s00603-021-02661-2.
  • [13] H.K. Yoon, J.S. Lee, J.D. Yu, Correlation of granite rock properties with longitudinal wave velocity in rock bolt. International Journal of Rock Mechanics and Mining Sciences 15 (2022). DOI: https://doi.org/10.1016/j.ijrmms.2022.105200.
  • [14] L.T. Dvornikov, V.A. Korneyev, Design of a device for rocks strength properties determining to solve the tasks of rock rock-cutting machines design. International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE) – Materials Science 224, DOI: https://doi.org/10.1051/matecconf/201822402084.
  • [15] M. Xu, X.U. Zhang, L. Luo, X.U. Zhao, Research on Mechanical Properties and Energy Evolution of Sandstone Under Cyclic Loading Mode. Mining Research and Development 41 (07), 123-128 (2021). DOI: https://doi.org/10.13827/j.cnki.kyyk.2021.07.023.
  • [16] Y.N. Sun, P.S. Zhang, W. Yan, F.Q. Yan, J.D. Wu, Compressive Deformation Characteristics of Crushed Sandstone Based on Multiple Experimental Factors. Archives of Mining Sciences 65 (1), 129-146 (2020). DOI: https://doi.org/10.24425/ams.2020.132711.
  • [17] S.J. Miao, H. Wang, Z.J. Huang, M.C. Liang, Experimental study on the mechanical properties of argillaceous quartz siltstone under different upper limit cyclic loadings. Engineering Mechanics 38 (07), 75-85 (2021).
  • [18] X.W. Li, Z.S. Yao, X.W. Huang, Z.X. Liu, X. Zhao, K.H. Mu, Investigation of deformation and failure characteristics and energy evolution of sandstone under cyclic loading and unloading. Rock and Soil Mechanics 42 (06), 1693-1704 (2021). DOI: https://doi.org/10.16285/j.rsm.2020.1463.
  • [19] H.F. Deng, Y. Hu, J.L. Li, Z. Wang, X.J. Zhang, A.L. Hu, The evolution of sandstone energy dissipation under cyclic loading and unloading. Chinese Journal of Rock Mechanics and Engineering 35 (S1), 2869-2875 (2016). DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0278.
  • [20] J.W. Zhou, X.G. Yang, W.X. Fu, J. Xu, H.T. Li, H.W. Zhou, J.F. Liu, Experimental test and fracture damage mechanical characteristics of brittle rock under uniaxial cyclic loading and unloading conditions. Chinese Journal of Rock Mechanics and Engineering 29 (06), 1172-1183 (2010).
  • [21] H. Wang, T.H. Yang, H.L. Liu, Y.C. Zhao, W.X. Deng, X.G. Hou, Mechanical properties and energy evolution of dry and saturated sandstones under cyclic loading. Rock and Soil Mechanic 38 (06), 1600-1608 (2017). DOI: https://doi.org/10.16285/j.rsm.2017.06.008.
  • [22] Y. Xu, C.J. Li, Q.Q. Zheng, X. Ni, Q.Q. Wang, Analysis of energy evolution and damage characteristics of mudstone under cyclic loading and unloading. Chinese Journal of Rock Mechanics and Engineering 38 (10), 2084-2091 (2019). DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0153.
  • [23] J. Yu, W. Yao, W.B. Ren, Z.Z. Fan, Deformation law of cyclic disturbance and a failure precursor feature of marble under high stress. Chinese Journal of Geotechnical Engineering 1-7. DOI: http://kns.cnki.net/kcms/detail/32.1124.tu.20220301.0915.004.html.
  • [24] S.G. Li, S.B. Liu, H.F. Lin, H.Q. Shuang, L.M. Li, H.X. Yu, R.W. Luo, Experimental research on deformation and failure characteristics of coal by staged cyclic loading and unloading. Coal Science and Technology 49 (04), 199-205 (2021). DOI: https://doi.org/10.13199/j.cnki.cst.2021.04.024.
  • [25] Z.Y. Liu, X. Dong, X.Y. Zhang, Experimental study on mechanical properties of bedding coal and rock under graded cyclic loading. Chinese Journal of Rock Mechanics and Engineering 40 (S1), 2593-2602 (2021). DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0643.
  • [26] F.K. Xiao, Z.L. Shen, G. Liu, Z. Zhang, F.R. Zhang, Relationship between hysteresis loop and elastoplastic strain energy during cyclic loading and unloading. Chinese Journal of Rock Mechanics and Engineering 33 (9), 1791-1797 (2014). DOI: https://doi.org/10.13722/j.cnki.jrme.2014.09.008.
  • [27] V. Srinivasan, T. Gupta, T.A. Ansari, T.N. Singh, An experimental study on rock damage and its influence in rock stress memory in a metamorphic rock. Bulletin of Engineering Geology and the Environment 79 (8), 4335-4348 (2020). DOI: https://doi.org/10.1007/s10064-020-01813-y.
  • [28] X.B. Yang, H.M. Cheng, J.Q. Lü, X. Hou, C.G. Nie, Energy consumption ratio evolution law of sandstones under triaxial cyclic loading. Rock and Soil Mechanics 40 (10), 3751-3757+3766 (2019). DOI: https://doi.org/10.16285/j.rsm.2018.2166.
  • [29] Q.L. Li, Z.J. Jia, H.L. Fu, Experimental study on dynamic characteristics of sandstone under cyclic loading and different confining pressures. Journal of Railway Science and Engineering 16 (10), 2459-2466 (2019). DOI: https://doi.org/10.19713/j.cnki.43-1423/u.2019.10.011.
  • [30] Z.W. Ni, X.G. Wu, H. Chen, Y.X. Zhou, Study on Mechanical Properties of Sandstone under Grading Cyclic Loading and Unloading Test. Metal Mine (10), 21-27 (2021). DOI: https://doi.org/10.19614/j.cnki.jsks. 202110004.
  • [31] G.J. Cai, W.P. Sun, X.R. Chen, S.L. Yang, J. Jia, L. Li, Study on the damage mechanical properties of sandstone under cyclic loading and unloading in stages. China Measurement & Test 1-7. DOI: http://kns.cnki.net/kcms/detail/51.1714.TB.20220322.1747.024.html.
  • [32] R.H. Wang, Y.Z. Jiang, J. Liu, Y. Wang, Experimental Study of Deformation Characteristics of Sandstone Under Cyclic Loading and Unloading Conditions. Journal of Mining & Safety Engineering 28 (02), 231-235 (2011).
  • [33] Y. Zhang, J. Xu, H.W. Yang, J.N. Wang, Effect of confining pressure on evolution law of hysteresis loop of sandstone under cyclic loading. Chinese Journal of Rock Mechanics and Engineering 30 (02), 320-326 (2011).
  • [34] Q.B. Meng, C.K. Wang, B.X. Huang, H. Pu, Z.Z. Zhang, W. Sun, J. Wang, Rock energy evolution and distribution law under triaxial cyclic loading and unloading conditions. Chinese Journal of Rock Mechanics and Engineering 39 (10), 2047-2059 (2020). DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0208.
  • [35] S.S. Zhang, E.L. Liu, J.H. Zhang, Experimental study of fatigue damage properties of sandstone samples under cyclic loading with low frequencies. Chinese Journal of Rock Mechanics and Engineering 33 (S1), 3212-3218 (2014). DOI: https://doi.org/10.13722/j.cnki.jrme.2014.s1.087.
  • [36] R.D. Peng, Y. Ju, F. Gao, H.P. Xie, P. Wang, Energy analysis on damage of coal under cyclical triaxial loading and unloading conditions. Journal of China Coal Society 39 (02), 245-252 (2014). DOI: https://doi.org/10.13225/j.cnki.jccs.2013.2010.
  • [37] P. Jia, N. Yang, D.Q. Liu, D.C. Wang, S.H. Wang, Y. Zhao, X.T. Xu, Failure mechanism of combined rock under true triaxial loading and unloading conditions. Journal of Central South University(Science and Technology) 52 (08), 2867-2875 (2021).
  • [38] J.X. Yang, M.K. Luo, X.W. Zhang, N. Huang, S.J. Hou, Mechanical properties and fatigue damage evolution of granite under cyclic loading and unloading conditions. Journal of Mining and Strata Control Engineering 3 (03), 91-98 (2021). DOI: https://doi.org/10.13532/j.jmsce.cn10-1638/td.20210510.001.
  • [39] J. Zhao, G.T. Guo, D.P. Xu, X. Huang, C. Hu, Y.L. Xia, D. Zhang, Experimental study of deformation and failure characteristics of deeply-buried hard rock under triaxial and cyclic loading and unloading stress paths. Rock and Soil Mechanics 41 (05), 1521-1530 (2020). DOI: https://doi.org/10.16285/j.rsm.2019.1604.
  • [40] T.R. Stacey, J. Wesseloo, Design and Prediction in Rock Engineering: The Importance of Mechanisms of Failure, with Focus on High Stress, Brittle Rock Conditions 55 (3), 1517-1535 (2022). DOI: https://doi.org/10.1007/s00603-021-02721-7.
  • [41] P.S. Zhang, D.Q. Xu, R. Zhang, X.L. Zhang, Y.H. Dong, W.L. Mu, Experimental study on seepage and mechanical properties of sandstone under different confining pressures and cyclic loads. Chinese Journal of Rock Mechanics and Engineering 41 (12): 2432-2450 (2022). DOI: https://doi.org/10.13722/j.cnki.jrme.2022.0241.
  • [42] The National Standards Compilation Group of Peoples Republic of China. GB/T50266 – 99Standard for tests method of engineering rock masses. Beijing: China Planning Press (1999).
  • [43] D. Head, T. Vanorio, Effects of changes in rock microstructures on permeability: 3-D printing investigation. Geophysical Research Lettersb 43 (14), 7494-7502 (2016). DOI: https://doi.org/10.1002/2016GL069334.
  • [44] Y.P. Chen, D.Y. Xi, Y.W. Xue, Dynamic stress-strain response of saturated rock under cyclic loading. Oil Geophysical Prospectingv (04), 409-413, 462-9 (2003).
  • [45] X Li, P.C. Zhang, Mechanical Characteristics and Energy Evolution Law of Yellow Sandstone under Cyclic Loading and Unloading Test. Journal of Yangtze River Scientific Research 38 (04), 124-131 (2021).
  • [46] Y.S. Xie, M. Ji, Y. Xu, Mechanics of mine rock mass. Xuzhou: China University of Mining and Technology Press (2016).
  • [47] D. Huang, Q. Tan, R.Q. Huang, Mechanism of strain energy conversion process for marble damage and fracture under high stress and rapid unloading. Chinese Journal of Rock Mechanics and Engineering 31 (12), 2483-2493 (2012).
  • [48] Z.Y. Li, G. Wu, T.Z. Huang, Y. Liu, Variation of energy and criteria for strength failure of shale under traixial cyclic loading. Chinese Journal of Rock Mechanics and Engineering 37 (3), 662-670 (2018). DOI: https://doi.org/10.13722/j.cnki.jrme.2017.0927.
  • [49] L.J. Dong, Z.W. Pei, X. Xie, Y.H. Zhang, X.H. Yan, Early identification of abnormal regions in rock-mass using travel time tomography. Engineering (2022). DOI: https://doi.org/10.1016/j.eng.2022.05.016.
  • [50] L.J. Dong, X.J. Tong, J. Ma, Quantitative Investigation of Tomographic Effects in Abnormal Regions of Complex Structures. Engineering 7 (7), 1011-1022 (2021). DOI: https://doi.org/10.1016/j.eng.2020.06.021.
  • [51] T.M. He, Q. Zhao, J. Ha, K.W. Xia, G. Grasselli, Understanding progressive rock failure and associated seismicity using ultrasonic tomography and numerical simulation. Tunnelling and Underground Space Technology 81, 26-34 (2018). DOI: https://doi.org/10.1016/j.tust.2018.06.022.
  • [52] L.J. Dong, Q. Tao, Q.C. Hu, Influence of temperature on acoustic emission source location accuracy in underground structure. Transactions of Nonferrous Metals Society of China 31 (8), 2468-2478 (2021). DOI: https://doi.org/10.1016/S1003-6326(21)65667-4.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7183136-7f37-46ba-b4cb-cbe9233b3a86
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.