PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative studies on the adsorption of Pb(II) ions by fly ash and slag obtained from CFBC technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fly ash and slag were examined for the removal processes of Pb(II) ions from water in batch experiments under different conditions of adsorbent dosage, initial concentration, pH and contact time. The materials are industrial waste generated from the high temperature treatment of sewage sludge by the circulating fluidized bed combustion (CFBC) technology. Physical and chemical properties, as well as adsorption efficiency and calculated maximum adsorption capacity of Pb(II) ions were determined using a variety of methods. The kinetic analysis revealed that the adsorption process is better described by the pseudo-second order equation and it is well fitted to the Freundlich model.
Słowa kluczowe
Rocznik
Strony
72--81
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Poznań University of Economics and Business, Department of Industrial Products and Packaging Quality, Institute of Quality Science, Al. Niepodległości 10, 61-875 Poznań, Poland
  • Poznań University of Economics and Business, Department of Industrial Products and Packaging Quality, Institute of Quality Science, Al. Niepodległości 10, 61-875 Poznań, Poland
Bibliografia
  • 1. WHO (2006) In: Guidelines for Drinking-water Quality Vol. 1. WHO Library Cataloguing-in-Publication Data Geneva.
  • 2. Kalak T. & Strus B. (2014). Influence of Selected Surfactants and High-Octane Oxygen Components on Water Content Electrolytic Conductivity in Gasoline and Interfacial Tension in the Water/Gasoline System. Energy&Fuels. 28 1926−1939. DOI: 10.1021/ef4018338.
  • 3. Wani A.L. Ara A. & Usmani J.A. (2015). Lead toxicity: a review. Interdiscip. toxicol. 8 55–64. DOI: 10.1515/intox-2015-0009.
  • 4. ATSDR’s Substance Priority List (2017) The Agency for Toxic Substances and Disease Registry (ATSDR).
  • 5. Azimi A. Azari A. Rezakazemi M. & Ansarpour M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews. 4 1–24. DOI: 10.1002/cben.201600010.
  • 6. Young R.T. (2003). Adsorbents: fundamentals and applications. John Wiley & Sons Inc. Hoboken New Jersey USA ISBN 0-471-29741-0.
  • 7. Kalak T. Dudczak J. & Cierpiszewski R. (2015). Adsorption behaviour of copper ions on elderberry gooseberry and paprika waste from aqueous solutions. Proceedings of 12th International Interdisciplinary Meeting on Bioanalysis (CECE) Brno Czech Republic 123–127.
  • 8. Kalak T. & Cierpiszewski R. (2018). Adsorptive removal of copper and cadmium ions using fly ash resulting from CFBC technology. Proceedings of 15th International Interdisciplinary Meeting on Bioanalysis (CECE) Brno Czech Republic 177–181.
  • 9. Environmental Protection 2014. Statistical Yearbook of GUS Warsaw 2014.
  • 10. Milieu Ltd WRc RPA and DG Environment (2008). Environmental Economic and Social Impacts of the Use of Sewage Sludge on Land. Final report for the European Commission.
  • 11. AKPGO Update National Waste Management Plan 2014 Warsaw 2015.
  • 12. Nowak B. Aschenbrenner P. & Winter F. (2013). Heavy metal removal from sewage sludge ash and municipal solid waste fly ash – A comparison. Fuel Process. Technol. 105 195–201. DOI: 10.1016/j.fuproc.2011.06.027.
  • 13. Wassilkowska A. Czaplicka-Kotas A. Bielski A. Zielina M. (2014). An analysis of the elemental composition of micro-samples using EDS technique. Tech. Trans.18, 133–148. DOI: 10.4467/2353737XCT.14.283.3371.
  • 14. Itskosa G. Koukouzasa N. Vasilatosb C. Megremib I. & Moutsatsouc A. (2010). Comparative uptake study of toxic elements from aqueous media by the different particlesize fractions of fly ash. J. Hazard. Mater. 183, 787–792. DOI: 10.1016/j.jhazmat.2010.07.095.
  • 15. Yadla S.V. Sridevi V. & Chandana Lakshmi M.V.V. (2012). Adsorption Performance Of Fly Ash For The Removal Of Lead. Int. J. Eng. Res. Technol. 1 1–7. ISSN: 2278-0181.
  • 16. Bhardwaj R. Chen X. & Vidic R.D. (2009). Impact of fly ash composition on mercury speciation in simulated flue gas. J. Air Waste Manage. Assoc. 59(11) 1331–1338. DOI: 10.3155/1047-3289.59.11.1331.
  • 17. Thiele A. Török B. & Költő L. (2012). Energy dispersive X-ray analysis (SEM-EDS) on slag samples from medievalbloomery workshops – the role of phosphorus in the archaeometallurgy of iron in Somogy County Hungary Proceedings of the 39th International Symposium for Archaeometry Leuven 1–9.
  • 18. Kong D.L.Y. Sanjayan J.G. & Sagoe-Crentsil K. (2007). Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37 1583–1589. DOI: 10.1016/j.cemconres.2007.08.021.
  • 19. Temuujin J. & Riessen A.V. (2009). Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 164, 634-639. DOI: 10.1016/j.jhazmat.2008.08.065.
  • 20. Thokchom S. Ghosh P. and Ghosh S. (2009). Resistance of Fly Ash Based Geopolymer Mortars in Sulfuric Acid. ARPN J. Eng. Appl. Sci. 4 65–70. ISSN 1819-6608.
  • 21. Hardjito D. Wallah S.E. Sumajouw D.M.J. & Rangan B.V. (2005). Fly ash-based geopolymer concrete. Aust. J. Struct. Eng. 6 77–86. DOI: 10.9790/1684-1404071216.
  • 22. Mustafa A.M. Kamarudin H. Omar Karem A.K.A. Ruzaidi C.M. Rafiza A.R. & Norazian M.N. (2011). Optimization Of Alkaline Activator/Fly Ash Ratio On The Compressive Strength Of Manufacturing Fly Ash-Based Geopolymer. 2nd International Conference on Mechanical Industrial and Manufacturing Technologies (MIMT 2011) Singapore.
  • 23. Alinnor I.J. (2007). Adsorption of heavy metal ions from aqueous solution by fly ash Fuel. 86 853–857.
  • 24. Bieniek. J. Ściubidło A. & Izabela Majchrzak-Kucęba I. (2013). Properties of fly ash derived from coal combustion in air and in oxygen enriched atmosphere in a pilot plant installation Oxy-Fuel CFB 01 MW Energetyka 11/2013 (713), 821–826. ISSN 0013-7294.
  • 25. Paya J. Monzo J. Borrachero M.V. Perris E. & Amahjour F. (1998). Thermogravimetric methods for determinig carbon content in fly ashes Cem. Concr. Res. 28(5), 675–686. DOI: 10.1016/S0008-8846(98)00030-1.
  • 26. Mohebbi M. Rajabipour F. & Scheetz B.E. (2015). Reliability of Loss on Ignition (LOI) Test for Determining the Unburned Carbon Content in Fly Ash. World of Coal Ash (WOCA) Conference in Nasvhill.
  • 27. Bansal R.C. & Goyal M. (2005). Activated Carbon Adsorption. CRC Press Taylor and Francis Group LLC Boca Raton FL. DOI: 10.1201/9781420028812.
  • 28. Sing K.S.W. (1982). Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 54 2201–2218. DOI: 10.1351/pac198254112201.
  • 29. Liu J. Qiu Q. Xing F. & Pan D. (2014). Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete. Mater. 7. 4282–4296. DOI: 10.3390/ma7064282.
  • 30. Ho YS. (2005). Effect of pH on lead removal from water using tree fern as the sorbent. Bioresour Technol. 96(11): 1292–1296. DOI: 10.1016/j.biortech.2004.10.011.
  • 31. Paliulis D. & Bubėnaitė J. (2014). Effect of pH for lead removal from polluted water applying peat. The 9th International Conference „Environmental Engineering 2014”. DOI: 10.3846/enviro.2014.042.
  • 32. Weng C.H. & Huang C.P. (2004). Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid Surf. A. 247, 137–143. DOI: 10.1016/j.colsurfa.2004.08.050.
  • 33. Adebowale K.O. Unuabonah I.E. & Olu-Owolabi B.I. (2006). The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 134, 130–139. DOI: 10.1016/j.jhazmat.2005.10.056.
  • 34. Sari A. Tuzen M. & Citak D. (2007). Equilibrium kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. J. Hazard. Mater. 149, 283–291. DOI: 10.1016/j.jhazmat.2007.03.078.
  • 35. Kalak T. & Cierpiszewski R. (2015). Correlation analysis between particulate soil removal and surface properties of laundry detergent solutions. Text. Res. J. 85, 1884–1906. DOI: 10.1177/0040517515578329.
  • 36. Kavitha D. & Namasivayam C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98 14–21. DOI: 10.1016/j.biortech.2005.12.008.
  • 37. Ho Y.S. & McKay G. (1999). Psudo-second order model for sorption processes Process Biochem. 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • 38. Wong K.K. Lee C.K. Low K.S. & Haron M.J. (2003). Removal of Cu(II) and Pb(II) by tartaric acid modified rice husk from aqueous solutions. Chemosphere. 50 23-28. DOI: 10.1016/S0045-6535(02)00598-2.
  • 39. Wang S.B. & Ariyanto E. (2007). Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interf. Sci. 314 25–31. DOI: 10.1016/j.jcis.2007.05.032.
  • 40. Kumar P.S. Vincent C. Kirthika K. & Kumar K.S. (2010). Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon. Braz. J. Chem. Eng. 27 339–346. DOI: 10.1590/S0104-66322010000200012.
  • 41. Ribeiro J. DaBoit K. Flores D. Kronbauer M.A. & Silva L.F. (2013). Extensive FE-SEM/EDS HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash Science of the Total Environment. 452–453C 98–107. DOI: 10.1016/j.scitotenv.2013.02.010.
  • 42. Ueda S. Koyo H. Ikeda T. Kariya Y. & Maeda M. (2000). Infrared emission spectra of CaF2-CaO-SiO2 melt. ISIJ Int. 40(8) 739–743. DOI: 10.2355/isijinternational.40.739.
  • 43. Iliashevsky O. Rubinov E. Yagen Y. & Gottlieb M. (2016). Functionalization of Silica Surface with UV-Active Molecules by Multivalent Organosilicon Spacer. Open J. Inorg. Chem. 6 163–174. DOI: 10.4236/ojic.2016.63012 .
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7170608-0da4-48e7-bea9-464e521a50f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.