PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of a new combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic Rankine cycle (ORC) is considered the most used technology in low temperature heat recovery units for cogeneration (electricity and cold). In this study, the effect of the operating parameters, in particular the condensation and the vaporization temperatures on the performance of the cycle are analyzed. In addition, we developed a new combination of organic Rankine cycle and vapor compresion cycle systems to make cogeneration with a negative cold (-10–0◦C), as well with a positive cold (0–10◦C). Three configurations are examined and studied in terms of energy efficiency, namely the performance of each configuration including net power, refrigeration capacity and overall efficiency, the thermal efficiency for ORC and the coefficient of performance for VCC. The used working fluids are n-hexane for the ORC and R600 for the VCC. We also try to apply this new system to have the cogeneration with congelation temperatures. The results show that, for cogeneration with negative cold, among the three configurations that we have developed, the cycle with recovery is preferable in which it has a better energy performance. For a hot spring of 1000 kW, this cycle can provide simultaneously, a maximum net work of 17 kW and a maximum net cooling capacity of 160 kW and an overall coefficient of the order of 0.3. For the production of positive cold, among the three configurations that we have developed, the basic cycle (without recovery) is the most suitable. With the same source of heat a maximum net work of 65 kW and a net cooling capacity in the order of 1000 kW with a global coefficient in the order of 1.05 is obtained. Our system is not only limited to be exploited for a temperature range between -10 ◦C and 10 ◦C, but can also be used with other fluids for lower temperatures (congelation temperatures).
Rocznik
Tom
Strony
39--81
Opis fizyczny
Bibliogr. 73 poz., rys., tab.
Twórcy
autor
  • Université Tunis El Manar, Unité de Recherche Energétique et Environnement, Ecole Nationale d’ingénieurs de Tunis, BP 37, Le Belvédère 1002 Tunis, Tunisia
autor
  • Technische Universität Darmstadt, Department of Mechanical Engineering (Dept.16)
autor
  • Université Tunis El Manar, Unité de Recherche Energétique et Environnement, Ecole Nationale d’ingénieurs de Tunis, BP 37, Le Belvédère 1002 Tunis, Tunisia
autor
  • Université Tunis El Manar, Unité de Recherche Energétique et Environnement, Ecole Nationale d’ingénieurs de Tunis, BP 37, Le Belvédère 1002 Tunis, Tunisia
Bibliografia
  • [1] International Energy Agency (IEA), 2010. International Energy Outlook-Highlights. IEA, Washington D.C.
  • [2] . Mohanty S: Forecasting of solar energy with application for a growing economy like India: Survey and implication. Renew. Sust. Energ. Rev. 78(2017), 539–553.
  • [3] Nematollahi O.: A feasibility study of solar energy in South Korea. Renew. Sust. Energ. Rev. 77(2017), 566–579.
  • [4] Ozoegwu C.G.: The status of solar energy integration and policy in Nigeria. Renew. Sust. Energ. Rev. 70(2017), 457–471.
  • [5] Aliyuae A.S., Dada J.O., Adam I.K.: Current status and future prospects of renewable energy in Nigeria. Renew. Sust. Energ. Rev. 48(2015), 336–346.
  • [6] Herche W.: Solar energy strategies in the U.S. utility market. Renew. Sust. Energ. Rev. 77(2017), 590–595.
  • [7] Communication from the Commission to the European Parliament and the Council: Energy Efficiency 610 and its contribution to energy security and the 2030 Framework for climate and energy policy. Brussels, 611 23.7.2014 COM(2014) 520 final.
  • [8] Sarbu I., Sebarchievici C.: General review of solar-powered closed sorption refrigeration systems. Energ. Convers. Manage. 105(2015), 403–422.
  • [9] Gingerich D.B., Mauter M.S.: Quantity, quality, and availability of waste heat from United States thermal power generation. Environ. Sci. Technol. 49(2015), 14, 8297–8306.
  • [10] Chen CL, Li PY, Le SNT: Organic Rankine cycle for waste heat recovery in a refinery. Ind. Eng. Chem. Res. 55(2016), 12, 3262–3275.
  • 11] Sansaniwal S.K., Sharma V.: Energy and exergy analyses of various typical solar energy applications: a comprehensive review. Renew. Sust. Energ. Rev. 82(2018), 2, 1576–1601.
  • [12] Bolaji B.: Exergetic analysis of solar drying systems. Natural Resources 2(2011), 92–97.
  • [13] Fudholi A., Sopian K.B., Othman M.Y., Ruslan M.H.: Energy and exergy analyses of solar drying system of red seaweed. Energy Buildings 68(2014), Pt. A, 121–129.
  • [14] Gunhan T., Ekren O., Demir V., Sahin A.S.: Experimental exergetic performance evaluation of a novel solar assisted LiCl–H2O absorption cooling system. Energy Buildings 68(2014), Pt. A, 138–146.
  • [15] Siddiqui F.R, El-Shaarawi M.A.I., Said S.A.M.: Exergo-economic analysis of a solar driven hybrid storage absorption refrigeration cycle. Energ. Convers. Manage 80(2014), 165–172.
  • [16] Bouaziz N., Lounissi D.: Energy and exergy investigation of a novel double effect hybrid absorption refrigeration system for solar cooling. Int. J. Hydrogen Energ. 40(2015), 13849– 13856.
  • [17] Gang P., Guiqiang L., Xi Z, Jie J., Yuehong S.: Experimental study and exergetic analysis of a CPC-type solar water heater system using higher-temperature circulation in winter. Sol. Energy 86(2012), 1280–1286.
  • [18] Shukla S.K., Gupta S.K.: Performance evaluation of concentrating solar cooker under Indian climatic conditions. In: Proc. 2nd Int. Conf. on Energy Sustainability, Jacksonville, 10–14 Aug. 2008.
  • [19] Naik P.S, Palatel A.: Energy and exergy analysis of a plane reflector integrated photovoltaic-thermal water heating system. ISRN Renew. Energy 2014:1–9. http://dx.doi.org/10.1155/2014/180618
  • [20] Wu J., Zhu D., Hua W., Zhu Y.: Exergetic analysis of a solar thermal power plant. Adv. Mater. Res. 724-725(2013), 156–162.
  • [21] Ehtiwesh I.A.S., Coelho M.C., Sousa A.C.M.: Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew. Sust. Energ. Rev. 56(2016), 145–155.
  • [22] Cau G., Cocco D.: Comparison of medium size concentrating solar power plants based on parabolic through and linear Fresnel col lectors. Energy Procedia 45(2014), 101–110.
  • [23] Reddy V.S., Kaushik S.C., Tyagi S.K.: Exergetic analysis and performance evaluation of parabolic dish Stirling engine solar power plant. Int. J. Energy Res., 2012, doi.org/10.1002/er.2926
  • [24] Kuavi S., Trahan J., Goswami D.Y., Rahman M.M., Stefanakos E.K.: Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energ. Combust. 39(2013), 4, 285–319.
  • [25] Frigo S., Gabbrielli R., Puccini M., Seggiani M., Vitolo S.: Smal l-Scale Wood-Fuel led CHP Plants: a Comparative Evaluation of the Available Technologies. Chem. Eng. Transact. 37(2014), DOI: 10.3303/CET1437142
  • [26] Wang Y., Tang Q., Wang M., Feng X.: Thermodynamic performance comparison between ORC and Kalina cycles for multi-stream waste heat recovery. Energ. Convers. Manage. 135(2017), 63–73.
  • [27] Roy J.P., Mishra M.K., Misra A.: Performance analysis of an Organic Rankine Cycle with superheating under different heat source temperature conditions. Appl. Energ. 88(2011), 9, 2995–3004.
  • [28] Cong C.E., Velautham S., Darus A.S.: Solar thermal organic Rankine cycle as a renewable energy option. Jurnal Mekanikal (Journal Mechanical, University Technology Malaysia) 20(2005), 68–77.
  • [29] Techanche B.F., Papadakisa G., Lambrinosa G., Frangoudakisa A.: Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 29(2009), 2468–2476.
  • [30] Drischer U., Bruggemann D.: Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants. Appl. Therm. Eng. 27(2007), 223–228.
  • [31] Daniel Walraven, Ben Laenen, William D’haeseleer: Minimizing the levelized cost of electricity production from low-temperature geothermal heat sources wit ORCs: Water or air cooled. Appl. Energ. 142(2015), 144–153.
  • [32] Heberle F, Brüggemann D.: Exergy based fluid selection for a geothermal organic Rankine cycle for combined heat and power generation. Appl. Therm. Eng. 30(2010), 11-12, 1326– 1332.
  • [33] Yang Y., Huo Y., Xia W., Wang X.: Construction and preliminary test of a geothermal ORC system using geothermal resource from abandoned oil wel ls in the Huabei oilfield of China. Energy 140(2017), 1, 633–645.
  • [34] Bina S.M., Jalilinasrabady S., Fujii H.: Thermo-economic evaluation of various bottoming ORCs for geothermal power plant, determination of optimum cycle for Sabalan power plant exhaust. Geothermics 70(2017), 181–191.
  • [35] Zanellato L., Astolfi M., SerafinoA., Rizzi D., Macchi E.: Field performance ealuation of ORC geothermal power plants using radial outflow turbines. Energy Procedia 129(2017), 607–614.
  • [36] Gingerich D.B., Mauter M.S.: Quantity, quality, and availability of waste heat from United States thermal power generation. Environ. Sci. Technol. 49(2015), 14, 8297–8306.
  • [37] Chen C.L., Li P.Y., Le S.N.T.: Organic Rankine cycle for waste heat recovery in a refinery. Ind. Eng. Chem. Res. 55(2016), 3262–3275.
  • [38] SunW., Yue X.: Exergy efficiency analysis of ORC (organic Rankine cycle) and ORC based combined cycles driven by low-temperature waste heat. Energ. Convers. Manage. 135(2017), 63–73.
  • [39] Grover VI. Kyoto Protocol. Encyclopedia of Global Warming and Climate Change. SAGE Publications Inc. Thousand Oaks, CA.
  • [40] Grover VI. Montreal Protocol. Encyclopedia of Global Warming and Climate Change. SAGE Publications Inc. Thousand Oaks, CA.
  • [41] Le V.L., Feidt M., Kheiria A., Pelloux-Prayerb S.: Performance optimization of lowtemperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential) working fluids. Energy 67(2014), 513–26.
  • [42] Aljundi I.H.: Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle. Renew. Energ. 36(2011), 4, 1196–1202.
  • [43] Sprouse Iii C., Depcik C.: Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery. Appl. Therm. Eng. 51(2013), 1-2, 711-722.
  • [44] Bracco R., Clemente S., Micheli D., Reini M.: Experimental tests and modelization of a domestic-scale ORC (organic Rankine cycle). Energy 58(2013), 107–116.
  • [45] Wang X.D., Zhao L., Wang J.L., Zhang W.Z., Zhao X.Z., Wu W.: Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa. Sol. Energy 84(2010), 3, 353–364.
  • [46] Nguyen V.M., Doherty P.S., Riffat S.B.: Development of a prototype low temperature Rankine cycle electricity generation system. Appl. Therm. Eng. 21(2001), 2, 169–181.
  • [47] Chintala V., Kumar S., Pandey J.K.: A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle. Renew. Sust. Energ. Rev. 81(2018),1, 493–509.
  • [48] Astolfi M., Romano M.C., Bombarda P., Macchi E.: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium-low temperature geothermal sources – Part B: Techno-economic optimization. Energy 66(2014), 435–446.
  • [49] Fiaschi D., Manfrida G., Maraschiello F.: Design and performance prediction of radial ORC turbo expanders. Appl. Energ. 138(2015), 517–532.
  • [50] Fiaschi D., Manfrida G., Maraschiello F.: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles. Appl. Energ. 97(2012), 601–608.
  • [51] Pei G., Li J., Li Y., Wang D., Ji J.: Construction and dynamic test of a smal l-scale organic Rankine cycle. Energy 36(2011),5, 3215–3223.
  • [52] Kang S.H.: Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine. Energy 96(2016), 142–154.
  • [53] Qiu G., Liu H., Riffat S.: Expanders for micro-CHP systems with organic Rankine cycle. Appl. Therm. Eng. 31(2011), 16, 3301-3307.
  • [54] Zhang Y-Q., Wu Y-T., Xia G-D., Ma C-F., Ji W-N., Liu S-W., et al.: Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine. Energy 77(2014), 499–508.
  • [55] Imran M, Usman M, Park B-S, Lee D-H.: Volumetric expanders for low grade heat and waste heat recovery applications. Renew. Sust. Energ. Rev. 57(2016), 1090–1109.
  • [56] Kaczmarczyk T.Z., Żywica G., Ihnatowicz E.: The impact of changes in the geometry of a radial micro turbine stage on the efficiency of the micro CHP plant based on ORC. Energy DOI: 10.1016/j.energy.2017.05.166.
  • [57] Walraven D., Laenen B., D’Haeseleer W.: Comparison of shel l-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles. Energ. Convers. Manage. 87(2014), 227–237.
  • [58] Bao H., Wang Y., Charalambous C., Lu Z., Wang L., Wang R., Roskilly A.P.: Chemisorption cooling and electric power cogeneration system drivenby low grade heat. Energy 72(2014), 590–598.
  • [59] Jiang L., Wang L.W., Zhang X.F., Liu C.Z.: Performance prediction on a resorption cogeneration cycle for power and refrigeration with energy storage. Renew. Energ. 83(2015), 1250–1259.
  • [60] Lu Y., Lu Y., Wang Y., Bao H., Yuan Y., Wang L., Roskilly A.P.: Analysis of an optimal resorption cogeneration using mass and heat recovery processes. Appl. Energ. 160(2015), 892–901.
  • [61] Jiang L., Wang L.W., Liu C.Z.,Wang R.Z.: Experimental study on a resorption system for power and refrigeration cogeneration. Energy 97(2016), 182–190.
  • [62] Wang L., Roskilly A.P., Wang R.: Solar powered cascading cogeneration cycle with ORC and adsorption technology for electricity and refrigeration. Heat Transfer Eng. 35(2014), 11-12, 1028–1034.
  • [63] Lu Y., Wang Y., Dong C., Wang L.W.: Design and assessment on a novel integrated system for power and refrigeration using waste heat from diesel engine. Appl. Therm. Eng. 91(2015), 591–599.
  • [64] SunW., Yue X.: Exergy efficiency analysis of ORC (organic Rankine cycle) and ORC based combined cycles driven by low-temperature waste heat. Energ. Convers. Manage. 135(2017), 63–73.
  • [65] Tchanche B.F., Pétrissans M., Papadakis G.: Heat resources and organic Rankine cycle machines. Renew. Sust. Energ. Rev. 39(2014), 1185–1199.
  • [66] Al-Mousawi F.N., Al-Dadah R., Mahmoud S.: Novel system for cooling and electricity: Four different integrated adsorption-ORC configurations with two expanders. Energ. Convers. Manage. 152(2017), 72–87.
  • [67] Aphornratana S., Sriveerakul T.: Analysis of a combined Rankine-vapor-compression refrigeration cycle. Energ. Convers. Manage. 51(2010), 2557–2564.
  • [68] Wang H., Peterson R., Harada K., Miller E., Ingram-Goble R., Fisher L., Yih J., Ward C.: Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling. Energy 36(2011), 447–458.
  • [69] Toujeni N.,Bouaziz N.,Kairaouani L.: Energetic investigation of a new combined ORC-VCC system for cogeneration. Energy Procedia 139(2017), 670–675.
  • [70] Saleh B., Koglbauer G., Wendland M., Fischer J.: Working fluids for low-temperature organic Rankine cycles. Energy 32(2007), 1210–1221.
  • [71] Nasir M.T., Kim K.C.: Working fluids selection and parametric optimization of an organic Rankine cycle coupled vapor compression cycle (ORC-VCC) for air conditioning using low grade heat. Energ. Buildings 129(2016), 378–395, DOI.org/10.1016/j.enbuild.2016.07.068
  • [72] EES, Enineering Equation Solver: ww.fchart.com/ees/
  • [73] Statgraphics: ww.statgraphics.com
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b70f0185-3610-4163-827c-07c1454773db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.