Identyfikatory
Warianty tytułu
Nanoparticles in polymer – ceramic biocomposites for bone tissue regeneration
Języki publikacji
Abstrakty
Medycyna regeneracyjna staje się szybko rozwijającą techniką w współczesnej biomedycynie. Coraz częściej na świecie są wykorzystywane nanocząstki do naprawiania i leczenia uszkodzonych komórek. Ten artykuł przeglądowy przedstawia wiedzę na temat kompozytów, składających się z polimeru oraz hydroksyapatytu, modyfikowanych nanocząstkami i ich zastosowaniami w medycynie regeneracyjnej.
Regenerative medicine is becoming a rapidly developing technique in modern biomedicine. Nanoparticles are used increasingly to repair and heal damaged cells. The paper presents knowledge about the use of nanoparticles in the modification of polymer and hydroxyapatite composites and their applications in regenerative medicine.
Czasopismo
Rocznik
Tom
Strony
28--30
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Wydział Fizyki Uniwersytetu Warszawskiego
Bibliografia
- [1] Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: Recent advances and challenges. Critical Reviews in Biomedical Engineering 2012;40.
- [2] Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 2019;219.
- [3] Walmsley GG, McArdle A, Tevlin R, et al. Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine 2015;11.
- [4] Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Frontiers in Bioengineering and Biotechnology 2019;7.
- [5] Melo P, Naseem R, Corvaglia I, et al. Processing of Sr2+ Containing Poly L-Lactic Acid-Based Hybrid Composites for Additive Manufacturing of Bone Scaffolds. Frontiers in Materials 2020;7.
- [6] Ramesh N, Moratti SC, Dias GJ. Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. Journal of Biomedical Materials Research - Part B Applied Biomaterials 2018;106.
- [7] Xiao G, Yin H, Xu W, Lu Y. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds. Journal of Biomaterials Science, Polymer Edition 2016;27.
- [8] Sobczak-Kupiec A, Drabczyk A, Florkiewicz W, et al. Review of the applications of biomedical compositions containing hydroxyapatite and collagen modified by bioactive components. Materials 2021;14.
- [9] Xin C, Qi X, Zhu M, Zhao SC, Zhu YF. Hydroxyapatite Whisker-reinforced Composite Scaffolds Through 3D Printing for Bone Repair. Wuji Cailiao Xuebao/Journal of Inorganic Materials 2017;32.
- [10] Chong LH, Hassan MI, Sultana N. Electrospun Polycaprolactone (PCL) and PCL/ nano-hydroxyapatite (PCL/nHA)-based nanofibers for bone tissue engineering application. In: 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015. 2015.
- [11] Calandrelli L, Immirzi B, Malinconico M, et al. Natural and synthetic hydroxyapatite filled PCL: Mechanical properties and biocompatibility analysis. In: Journal of Bioactive and Compatible Polymers. Vol 19. 2004.
- [12] Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chemical Engineering Journal 2019;362.
- [13]Groza A, Ciobanu CS, Popa CL, et al. Structural properties and antifungal activity against Candida albicans biofilm of different composite layers based on Ag/Zn doped hydroxyapatite-polydimethylsiloxanes. Polymers 2016;8.
- [14] Audita R, Khoirunisa, Zahra HA, Hernawan BN, Hidayat H, Is F. Composite of Polylactic Acid / Chitosan / Ag- Hydroxyapatite Synthesized Using Turmeric Leaves Extract-Mediated Silver Nanoparticle and Snail Shell as Antibacterial Material. Journal of Science and Data Analysis 2021;2:116–123.
- [15] Stolzoff M, Webster TJ. Reducing bone cancer cell functions using selenium nanocomposites. Journal of Biomedical Materials Research - Part A 2016;104:476–482.
- [16] Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-based Complementary and Alternative Medicine 2015;2015.
- [17] Yadid M, Feiner R, Dvir T. Gold Nanoparticle-Integrated Scaffolds for Tissue Engineering and Regenerative Medicine. Nano Letters 2019;19:2198–2206.
- [18] Kohout C, Santi C, Polito L. Anisotropic gold nanoparticles in biomedical applications. International Journal of Molecular Sciences 2018;19.
- [19] Rajchakit U, Sarojini V. Recent Developments in Antimicrobial-Peptide-Conjugated Gold Nanoparticles. Bioconjugate Chemistry 2017;28.
- [20] Liang H, Xu X, Feng X, et al. Gold nanoparticles-loaded hydroxyapatite composites guide osteogenic differentiation of human mesenchymal stem cells through Wnt/β-catenin signaling pathway. International Journal of Nanomedicine 2019;14.
- [21] Kisterskaya LD, Loginova OB, Ulyanchich N v., et al. Antibacterial Surfaces Formed by Silver Nanoparticles on Bone Implants with Bioactive Coatings. Powder Metallurgy and Metal Ceramics 2019;58:189–196.
- [22] Wang J, Zhan L, Zhang X, Wu R, Liao L, Wei J. Silver Nanoparticles Coated Poly(L-Lactide) Electrospun Membrane for Implant Associated Infections Prevention. Frontiers in Pharmacology 2020;11.
- [23] Lee D, Ko WK, Kim SJ, et al. Inhibitory effects of gold and silver nanoparticles on the differentiation into osteoclasts in vitro. Pharmaceutics 2021;13.
- [24] Kang EY, Park S bin, Choi B, et al. Enhanced mechanical and biological characteristics of PLLA composites through surface grafting of oligolactide on magnesium hydroxide nanoparticles. Biomaterials Science 2020;8:2018–2030.
- [25] Kum CH, Seo SH, Kang SN, et al. Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly(L-lactide) composites. Macromolecular Research 2014;22.
- [26] Andronescu E, Ficai M, Voicu G, Ficai D, Maganu M, Ficai A. Synthesis and characterization of collagen/hydroxyapatite: Magnetite composite material for bone cancer treatment. Journal of Materials Science: Materials in Medicine 2010;21.
- [27] Lee SC, Lee NH, Patel KD, et al. The effect of selenium nanoparticles on the osteogenic differentiation of MC3T3-E1 cells. Nanomaterials 2021;11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b704b531-5458-4648-a1c6-8eb72484c16b