PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

How to suppress the Kirkendall porosity within the Ti/Ni explosive welds?

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pure Ti (Grade 1) and Ni (type Ni201) were used to produce the Ti/Ni welds employing the explosive welding process. Thermal expansion of the welded plates was determined using dilatometric measurements from room temperature up to 600 °C. The results showed that the thermal expansion coefficient of Ti/Ni welded plates is closer to that of pure nickel than would be suggested by the Timoshenko’s model for bimetallic strip. The microstructure of the Ti/Ni interface after exposure to high temperatures revealed the presence of extensive interface porosity (Kirkendall porosity). This may cause a catastrophic disintegration of the weld during working or essential forming. The welded plates were annealed at the temperature of 650 °C under different applied compressive loads, and the applied load was shown to alter the microstructure of the Nix<.sub>Tiy phases present at the Ti/Ni interface. Based on the obtained interface microstructural data, the strategy to suppress the Kirkendall porosity at the interface was proposed.
Rocznik
Strony
art. no. e117, 2024
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Krakow, Poland
  • High Energy Technologies Works “Explomet”, Opole, Poland
autor
  • Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
Bibliografia
  • 1. Li J, Vivek A, Daehn G. Improved properties and thermal stability of a titanium-stainless steel solid-state weld with a niobium interlayer. J Mater Sci Technol. 2021;79:191-204. https://doi.org/10.1016/j.jmst.2020.11.050.
  • 2. Kahraman N, Gulenc B, Findik F. Joining of titanium/stainless steel by explosive welding and effect on interface. J Mater Process Technol. 2005;169:127-33. https://doi.org/10.1016/j.jmatprotec.2005.06.045.
  • 3. Skuza W, Paul H, Berent K, Prazmowski M, Bobrowski P. Microstructure and mechanical properties of Ti/Cu clads manufactured by explosive bonding at different stand-off distances. Key Eng Mater. 2016;716:464-71. https://doi.org/10.4028/www.scientific.net/kem.716.464.
  • 4. Guo X, Ma Y, Jin K, Wang H, Tao J, Fan M. Effect of standoff distance on the microstructure and mechanical properties of Ni/Al/Ni laminates prepared by explosive bonding. J Mater Eng Perform. 2017;26:4235-44. https://doi.org/10.1007/s11665-017-2890-5.
  • 5. Acarer M, Gülenç B, Findik F. Investigation of explosive welding parameters and their effects on microhardness and shear strength. Mater Des. 2023;24:659-64. https://doi.org/10.1016/S0261-3069(03)00066-9.
  • 6. Durgutlu A, Okuyucu H, Gulenc B. Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel. Mater Des. 2008;29:1480-4. https://doi.org/10.1016/j.matdes.2007.07.012.
  • 7. Mousavi AAA, Al-Hassani STS. Numerical and experimental studies of the mechanism of the wavy interface formations in explosive/impact welding. J Mech Phys Solids. 2005;53:2501-28. https://doi.org/10.1016/j.jmps.2005.06.001.
  • 8. Nobili A, Masri T, Lafont MC (1999) Recent developments in characterization of a titanium steel explosion bond interface. Proceedings of Reactive Metals in Corrosive Applications Conference Eds Wah Chang Albany. 89-98.
  • 9. Hammerschmidt H, Kreye M (1982) TEM investigation of the microstructure affected by the bonding process during oblique collision of metallic surfaces. 5th International Symposium Explosive Working of Metals.
  • 10. Hoseini AMM, Tolaminejad B. Weldability window and the effect of interface morphology on the properties of Al/Cu/Al laminated composites fabricated by explosive welding. Mater Des. 2015;86:516-25. https://doi.org/10.1016/j.matdes.2015.07.114.
  • 11. Lazurenko DV, Bataev IA, Mali VI, Bataev AA, Maliutina IN, Lozhkin VS, Esikov MA, Jorge AMJ. Explosively welded multi-layer Ti-Al composites: structure and transformation during heat treatment. Mater Des. 2016;102:122-30. https://doi.org/10.1016/j.matdes.2016.04.037.
  • 12. Fronczek DM, Wojewoda-Budka J, Chulist R, Sypien A, Korneva A, Szulc Z, Schell N, Zieba P. Structural properties of Ti/Al clads manufactured by explosive welding and annealing. Mater Des. 2016;91:80-9. https://doi.org/10.1016/j.matdes.2015.11.087.
  • 13. Kosturek R, Wachowski M, Śnieżek L, Gloc M. The Influence of the post-weld heat treatment on the microstructure of Inconel 625/Carbon Steel bimetal joint obtained by explosive welding. Metals. 2019;9(2):246. https://doi.org/10.3390/met9020246.
  • 14. Topolski K, Wieciński P, Szulc Z, Gałka A, Garbacz H. Progress in the characterization of explosively joined Ti/Ni bimetals. Mater Des. 2014;63:479-87. https://doi.org/10.1016/j.matdes.2014.06.046.
  • 15. Nishida M, Chiba A, Morizono Y, Matsumoto M, Murakami T, Inoue A. Formation of nonequilibrium phases at collision interface in an explosively welded Ti/Ni clad. Mater Trans JIM. 1995;36:1338-43. https://doi.org/10.2320/matertrans1989.36.1338.
  • 16. Chiba A, Nishida M, Morizono Y. Microstructure of bonding interface in explosively-welded clads and bonding mechanism. Mater Sci Forum. 2004;465-466:465-74. https://doi.org/10.4028/www.scientific.net/MSF.465-466.465.
  • 17. Rosenthal I, Miriyev A, Tuval E, Stern A, Frage N. Characterization of explosion-bonded Ti-alloy/steel plate with Ni interlayer. Metallogr Microstruct Anal. 2014;3:97-103. https://doi.org/10.1007/s13632-014-0120-1.
  • 18. Taylor A, Floyd RW. Precision measurements of lattice parameters of non-cubic crystals. Acta Cryst. 1950;3:285-9. https://doi.org/10.1107/S0365110X50000732.
  • 19. Fukuda T, Kakeshita T, Houjoh H, Shiraishi S, Saburi T. Electronic structure and stability of intermetallic compounds in the Ti-Ni system. Mater Sci Eng A. 1999;273-275:166-9. https://doi.org/10.1016/S0921-5093(99)00283-X.
  • 20. Szmul M, Stan-Glowinska K, Janusz-Skuza M, Bigos A, Chudzio A, Szulc Z, Wojewoda-Budka J. The interface zone of explosively welded titanium/steel after short-term heat treatment. Metall Mater Trans A. 2021;52:1588-95. https://doi.org/10.1007/s11661-021-06174-z.
  • 21. Kwiecien I, Wierzbicka-Miernik A, Szczerba M, Bobrowski P, Szulc Z, Wojewoda-Budka J. On the disintegration of A1050/Ni201 explosively welded clads induced by long-term annealing. Materials. 2021;14:2931. https://doi.org/10.3390/ma14112931.
  • 22. Terlicka S, Dębski A, Budziak A, Zabrocki M, Gąsior W. Structural and physical studies of the Ag-rich alloys from Ag-Li system. Thermochim Acta. 2019;673:185-91. https://doi.org/10.1016/j.tca.2019.01.016.
  • 23. Touloukian YS, Kirby RK, Taylor RE, Desai PD. Thermal expansion: metallic elements and alloys. New York: Thermophysical properties of matter; 1975.
  • 24. Wani BN, Mathews MD, Rao URK. Polymorphism in tripotassium lanthanate hexafluorides (Ln = Sm. Eu. Gd. Tb and Er). Thermochim Acta. 1995;265:141-9. https://doi.org/10.1016/0040-6031(95)02409-U.
  • 25. Timoshenko S. Analysis of bi-metal thermostats. J Opt Soc Am. 1925;11:233. https://doi.org/10.1364/JOSA.11.000233.
  • 26. Gale WF, Totemeier TC (1992) Elastic properties, damping capacity and shape memory alloys. In: Smithells Metals Reference Book. Elsevier. pp 15-1-15-44. https://doi.org/10.1016/B978-075067509-3/50018-X.
  • 27. Pawar RR, Deshpande VT. The anisotropy of the thermal expansion of α-titanium. Acta Cryst. 1968;A24:316-7. https://doi.org/10.1107/S0567739468000525.
  • 28. Sridharan S, Nowotny H, Wayne SF. Investigations within the quaternary system titanium-nickel-aluminium-carbon. Monatsh Chem. 1983;114:127-35. https://doi.org/10.1007/BF00798317.
  • 29. Kudoh Y, Tokonami M, Miyazaki S, Otsuka K. Crystal structure of the martensite in Ti-49.2 at.%Ni alloy analyzed by the single crystal X-ray diffraction method. Acta Metall. 1985;33:2049-56. https://doi.org/10.1016/0001-6160(85)90128-2.
  • 30. Ellner M, Kolatschek K, Predel B. On the partial atomic volume and the partial molar enthalpy of aluminium in some phases with Cu and Cu3Au structures. J Less-Common Met. 1991;170:171-84. https://doi.org/10.1016/0022-5088(91)90062-9.
  • 31. Mamalis AG, Szalay A, Vaxevanidis NM, Pantelis DI. Macroscopic and microscopic phenomena of nickel/titanium “shape memory” bimetallic strips fabricated by explosive cladding and rolling. Mater Sci Eng A. 1994;188:267-75. https://doi.org/10.1016/0921-5093(94)90381-6.
  • 32. Paul H, Faryna M, Prażmowski M, Bański R. Changes in the bonding zone of explosively welded sheets. Arch Metall Mater. 2011;56:463-74. https://doi.org/10.2478/v10172-011-0050-8.
  • 33. Zdrodowska K, Wojsyk K, Szala M. The microstructural properties of explosion welded Ni/Ti joint. ASTRJ. 2014;8:71-4. https://doi.org/10.12913/22998624.1105174.
  • 34. Massalski TB, Okamoto HSubramanian PR, Kacprzak L (1990) Binary alloy phase diagrams 2nd edition. vol. 3. Materials Park, ASM International, Ohio.
  • 35. Hinotani S, Ohmori Y. The microstructure of diffusion-bonded Ti/Ni interface. Trans Jpn Inst Met. 1988;29:116-24. https://doi.org/10.2320/matertrans1960.29.116.
  • 36. Paz Y, Puente AE, Dunand DC. Synthesis of NiTi microtubes via the Kirkendall effect during interdiffusion of Ti-coated Ni wires. Intermetallics. 2019;92:42-8. https://doi.org/10.1016/j.intermet.2017.09.010.
  • 37. Bastin GF, Rieck GD. Diffusion in the titanium-nickel system: II calculations of chemical and intrinsic diffusion coefficients. Metall Trans. 1974;5:1827-31. https://doi.org/10.1007/BF02644147.
  • 38. Hu L, Xue Y, Shi F. Intermetallic formation and mechanical properties of Ni-Ti diffusion couples. Mater Des. 2017;130:175-82. https://doi.org/10.1016/j.matdes.2017.05.055.
  • 39. Paritskaya LN, Bogdanov VV. Stress-sensitive effects in diffusion zone. Defect Diffus Forum. 1996;129-130:79-94. https://doi.org/10.4028/www.scientific.net/DDF.129-130.79.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6f828c5-c9ec-446d-b76b-c2dc87f5e5c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.