Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We study sets of non-typical points under the map fβ↦βx mod 1 for non-integer β and extend our results from [Fund. Math. 209 (2010)] in several directions. In particular, we prove that sets of points whose forward orbit avoid certain Cantor sets, and the set of points for which ergodic averages diverge, have large intersection properties. We observe that the technical condition β>1.541 found in the above paper can be removed.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
123--132
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Institute of Mathematics Polish Academy of Sciences Śniadeckich 8, P.O. Box 21 00-956 Warszawa, Poland
- Duvholmsgränd 24 12741 Skärholmen, Sweden
autor
- Institute of Mathematics Polish Academy of Sciences Śniadeckich 8, P.O. Box 21 00-956 Warszawa, Poland
- Centre for Mathematical Sciences Lund University Box 118 22100 Lund, Sweden
Bibliografia
- [1] D. Dolgopyat, Bounded orbits of Anosov ows, Duke Math. J. 87 (1997), 87-114.
- [2] K. Falconer, Sets with large intersection properties, J. London Math. Soc. 49 (1994), 267-280.
- [3] D. Färm, Simultaneously non-converging frequencies of words in different expansions, Monatsh. Math. 162 (2011), 409-427.
- [4] D. Färm and T. Persson, Dimension and measure of baker-like skew-products of β-transformations, Discrete Contin. Dynam. Systems Ser. A 32 (2012), 3525-3537.
- [5] D. Färm, T. Persson and J. Schmeling, Dimension of countable intersections of some sets arising in expansions in non-integer bases, Fund. Math. 209 (2010), 157-176.
- [6] J. C. Oxtoby, The Banach{Mazur game and Banach category theorem, in: Ann. Of Math. Stud. 39, Princeton Univ. Press, Princeton, 1957, 159-163.
- [7] W. Parry, On the β -expansion of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416.
- [8] W. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178-199.
- [9] B. Solomyak, On the random series P Σ±λn (an Erdős problem), Ann. of Math. 142 (1995), 611-625.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6ec3839-51a6-497b-b7f2-8e314750ca44