PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

MCT heterostructures for higher operating temperature infrared detectors designed in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper presents examples of infrared detectors with mercury cadmium telluride elaborated at the Institute of Applied Physics, Military University of Technology and VIGO Photonics S.A. Fully doped HgCdTe epilayers were grown with the metal organic chemical vapour deposition technique which provides a wide range of material composition covering the entire infrared range from 1.5 μm to 14 μm. Fundamental issues concerning the design of individual areas of the heterostructure including: the absorber, contacts, and transient layers with respect to their thickness, doping and composition were discussed. An example of determining the gain is also given pointing to the potential application of the obtained devices in avalanche photodiode detectors that can amplify weak optical signals. Selected examples of the analysis of current-voltage and spectral characteristics are shown. Multiple detectors based on a connection in series of small individual structures are also presented as a solution to overcome inherent problems of low resistance of LWIR photodiodes. The HgCdTe detectors were compared with detectors from III-V materials. The detectors based on InAs/InAsSb superlattice materials achieve very comparable parameters and, in some respects, they are even superior to those with mercury cadmium telluride.
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  • Vigo Photonics S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
autor
  • Vigo Photonics S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
  • Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Kopytko, M. & Rogalski, A. New insights into the ultimate performance of HgCdTe photodiodes. Sens. Actuator A Phys. 339, 113511 (2022). https://doi.org/10.1016/j.sna.2022.113511
  • [2] Rogalski, A. Infrared and Terahertz Detectors, Third Edition. (Taylor & Francis Ltd., 2018).
  • [3] Kopytko, M. & Rogalski, A. Figure of merit for infrared detector materials. Infrared Phys. Technol. 122, 104063 (2022). https://doi.org/10.1016/j.infrared.2022.104063
  • [4] Lee, D. et. al. Law 19: The ultimate photodiode performance metric. Proc. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  • [5] Madejczyk, P. et al. Higher operating temperature IR detectors of the MOCVD grown HgCdTe heterostructures. J. Electron. Mater. 49, 6908-6917 (2020). https://doi.org/10.1007/s11664-020-08369-3
  • [6] Gawron, W. et al. Multiple long wavelength infrared MOCVD grown HgCdTe photodetectors for high temperature conditions. IEEE Sens. J. 21, 4509-4516 (2021). https://doi.org/10.1109/JSEN.2020.3035246
  • [7] Maxey, C. D., Capper, P. & Baker, I. M. MOVPE Growth of Cadmium Mercury Telluride and Applications. in Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications (eds. Irvine, S. & Capper, P.) 293-324 (JohnWiley & Sons, Ltd., 2020). https://doi.org/10.1002/9781119313021.ch9
  • [8] Mitra, P. et al. MOVPE growth of HgCdTe for high performance 3-5 μm photodiodes operating at 100-180K. J. Electron. Mater. 28, 589-595 (1999). https://doi.org/10.1007/s11664-999-0040-z
  • [9] Pillans, L., Baker, I. & Kennedy McEwen, R. Ultra-low power HOT MCT grown by MOVPE for handheld applications. Proc. SPIE 9070, 90701E (2014). https://doi.org/10.1117/12.2050327
  • [10] Kopytko, M., Murawski, K., Madejczyk, P., Sobieski, J. & Gawron, W. Mid-Infrared HgCdTe heterostructure and its potential application to APD operation. IEEE Electron Device Lett. 43, 761-764 (2022). https://doi.org/10.1109/LED.2022.3159303
  • [11] Reine, M. et al. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays. J. Electron. Mater. 36, 1059-1067 (2007). https://doi.org/10.1007/s11664-007-0172-y
  • [12] Razeghi, M., Dehzangi, A. & Li, J. Multi-band SWIR-MWIR-LWIR Type-II superlattice based infrared photodetector. Results Opt. 2, 100054 (2021). https://doi.org/10.1016/j.rio.2021.100054
  • [13] Michalczewski, K., Jureńczyk, J., Kubiszyn, Ł. & Martyniuk, P. The dependence of InAs/InAsSb superlattice detectors’ spectral response on molecular beam epitaxy growth temperature. Appl. Sci. 12, 1368 (2022). https://doi.org/10.3390/app12031368
  • [14] Gomółka, E. et al. Electrical and optical performance of mid-wavelength infrared InAsSb heterostructure detectors. Proc. SPIE 10433, 104330Y-1 (2017). https://doi.org/10.1117/12.2279604
  • [15] Gawron, W., Kubiszyn, Ł., Michalczewski, K., Piotrowski, J. & Martyniuk, P. Demonstration of the longwave type-II superlattice InAs/InAsSb cascade photodetector for high operating temperature. IEEE Electron. Device Lett. 43, 1487-1490 (2022). https://doi.org/10.1109/LED.2022.3188909
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6ead2e8-fc7d-4ecd-8507-f710f42a0f61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.