PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diatom-based reconstruction of trophic status changes recorded in varved sediments of Lake Żabińskie (northeastern Poland), AD 1888-2010

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigated diatom assemblages in surface sediments of 46 lakes in northern Poland and developed a diatom-based transfer function to infer epilimnetic total phosphorus (TP) concentrations. Multivariate ordination techniques (DCA, CCA) were used to identify major environmental gradients and to evaluate the effect of environmental parameters on the distribution of diatoms in the modern diatom dataset. The transfer function was developed using PLS, WA and WA-PLS models, and applied to a varved sediment core from Lake Żabińskie, AD 1888-2010. Annually-resolved quantitative reconstruction of TP concentrations shows that multidecadal changes in the TP level reflect the local settlement history, land-use changes and development of agriculture and tourism. The period of high trophic levels with maximum values of TP was documented until the late 1920s. In the 1930s-1970s period, TP generally decreased and eutraphentic flora was partly replaced by oligotraphentic and oligo-mesotraphentic diatom taxa. The reconstructed TP concentrations have started to increase from the 1970s. After the 1950s, strong short-term fluctuations of TP values were noted and explained by interactions between meteorological conditions, water column mixing and nutrient cycling in the lake.
Słowa kluczowe
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
  • Faculty of Oceanography and Geography, University of Gdańsk, Poland
  • Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Switzerland
autor
  • Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Switzerland
autor
  • Faculty of Oceanography and Geography, University of Gdańsk, Poland
Bibliografia
  • [1]. Amann, B., Lobsinger, S., Fischer, D., Tylmann, W., Bonk, A. et al. (2014). Spring temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, north-eastern Poland, AD 1907-2008. Global Planet Change 123: 86-96. DOI: 10.1016/j.gloplacha.2014.10.008.
  • [2]. Anderson, N.J. (1993). Natural versus anthropogenic change in lakes: the role of the sediment record. Trends in Ecology & Evolution 8: 356-361. DOI: 10.1016/0169-5347(93)90219-F.
  • [3]. Battarbee, R.W. (1986). Diatom analysis. In B.E. Berglund (Ed.), Handbook of Holocene palaeoecology and palaeohydrology (pp. 527-570). Publisher Wiley-Interscience: Chichester.
  • [4]. Battarbee, R.W., Jones, V.J., Flower, R.J., Cameron, N.G., Bennion, H. et al. (2001). Diatoms. In J.P. Smol, H.J.B. Birks, W.M. Last (Eds.) Tracking Environmental Change Using Lake Sediments. 3: Terrestrial, Algal, and Siliceous Indicators. (pp. 155-202). Dordrecht: Kluwer Academic Publishers. DOI: 10.1007/0-306-47668-1_8.
  • [5]. Battarbee, R.W., Anderson, N.J., Jeppensen, E. & Leavit, P.R. (2005). Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772-1780. DOI: 10.1111/j.1365-2427.2005.01427.x.
  • [6]. Bennion, H., Appleby P.G. & Philips G.L. (2001). Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. Journal of Paleolimnology 26: 181-204. DOI: 10.1023/A:1011137625746.
  • [7]. Bennion, H., Wunsam, S. & Schmidt, R. (1995). The validation of diatom-phosphorus transfer functions: An example from Mondsee, Austria. Freshwater Biology 34: 271-283. DOI: 10.1111/j.1365-2427.1995.tb00887.x.
  • [8]. Bhattacharyya, P. & Volcani, B.E. (1980). Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proceedings of the National Academy of Science USA 77: 6386-6390. DOI: 10.1073/pnas.77.11.6386.
  • [9]. Birks, H.J.B. (1995). Quantitative palaeoenvironmental reconstructions. Statistical modelling of quaternary science data. Tech guide 5: 161-254.
  • [10]. Birks, H.J.B. (1998). Numerical tools in palaeolimnology – Progress, potentialities, and problems. Journal of Paleolimnology 20: 307-332. DOI: 10.1023/A:1008038 808690.
  • [11]. Bodén, P. (1991). Reproducibility in the Random Settling Method for Quantitative Diatom Analysis. Micropaleontology 37(3): 313-319. DOI: 10.2307/1485893.
  • [12]. Bonk, A., Tylmann, W., Amann, B., Enters, D. & Grosjean, M. (2015a). Modern limnology and varve-formation processes in Lake Żabińskie, northeastern Poland: comprehensive process studies as a key to understand the sediment record. Journal of Limnology 74: 358-370. DOI: 10.4081/ jlimnol.2014.1117.
  • [13]. Bonk, A., Tylmann, W., Goslar, M., Wacnik, A. & Grosjean, M. (2015b.) Comparing varve counting and 14C-AMS chronologies in the sediments of Lake Żabińskie, northeastern Poland: implications for accurate 14C dating of lake sediments, Geochronometria 42: 159-171. DOI: 10.1515/geochr-2015-0019.
  • [14]. Bradshaw, E.G. & Anderson N.J. (2001). Validation of a diatomphosphorus calibration set for Sweden. Freshwater Biology 47: 1963-1975. DOI: 10.1046/j.1365-2427.2001.00732.x.
  • [15]. Briand, J.F., Jacquet S., Bernard, C. & Humbert, J.F. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary Research 34: 361-377. DOI: 10.1051/vetres:2003019.
  • [16]. Carpenter, S.R., Caraco, N.F., Correll, D.L., Howard, R.W., Sharpley, A.N. & Smith, V.H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559-568. DOI: 10.2307/2641247.
  • [17]. Denys, L. (1991). A check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. I. Introduction, ecological code and complete list. Professional Paper Belgium Geological Survey 246: 1-41.
  • [18]. Dodds, W.K., Bouska, W.W., Eitzmann, J.L., Pilger, T.J., Pitts, K.L. et al. (2009). Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science & Technology 43: 12-19. DOI: 10.1021/es801217q.
  • [19]. Finsinger, W., Bigler, C, Krähenbühl, U., Lotter, A.F. & Ammann, B. (2006). Human impact and eutrophication patterns during the last 200 years at Lago Grande di Avigliana (N. Italy). Journal of Paleolimnology 36: 55-67. DOI: 10.1007/ s10933-006-0002-x.
  • [20]. Harper, D. (1992). Eutrophication of Freshwaters. London: Chapman Hall.
  • [21]. Håkansson, H. (2002). A compilation and evaluation of species in the general Stephanodiscus, Cyclostephanos and Cyclotella with a new genus in the family Stephanodiscaceae. Diatom Research 17(1): 1-139. DOI: 10.1080/0269249X.2002.9705534.
  • [22]. Hall, R.I., Smol, J.P. (2010). Diatoms as indicators of lake eutrophication. In J.P. Smol & E.F. Stoermer (Eds.), The Diatoms: Applications for the Environmental and Earth Sciences (pp. 122-151). Cambridge: Cambridge University Press. Chapter DOI: 10.1017/CBO9780511763175.008.
  • [23]. Hall, R.I., Leavitt, PR., Dixit, A.S., Quinlan, R. & Smol, J.R. (1999). Effects of agriculture, urbanization and climate on water quality in the northern Great Plains. Limnology and Oceanography 44: 739-756. DOI: 10.4319/lo.1999.44.3_part_2.0739.
  • [24]. Hall, R.I. & Smol, J.P. (1992). A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 27: 417-434. DOI: 10.1111/j.1365-2427.1992.tb00551.x.
  • [25]. Hernández-Almeida, I., Grosjean, M., Tylmann, W. & Bonk, A. (2015a). Chrysophyte cyst-inferred variability of warm season lake water chemistry and climate in northern Poland: training set and downcore reconstruction. Journal of Paleolimnology 53: 123-138. DOI: 10.1007/s10933-014-9812-4.
  • [26]. Hernández-Almeida, I., Grosjean, M., Tylmann, W. & Bonk, A. (2015b). A chrysophyte-based quantitative reconstruction of winter severity from varved lake sediments in NE Poland during the past millennium and its relationship to natural climate variability. Quaternary Science Review 122: 74-88. DOI: 10.1016/j.quascirev.2015.05.029.
  • [27]. Hill, M.O. & Gauch, H.G. Jr (1980). Detrended correspondence analysis: An improved ordination technique. Vegetatio 42: 47-58. DOI: 10.1007/BF00048870.
  • [28]. Hofmann, G. (1994). Aufwuchs-Diatomeen in Seen und ihre Eignung als Indikatoren der Trophie. Biblioteca Diatomologica 30: 1-241.
  • [29]. Jordan, P., Roppey, B. & Anderson, N.J. (2002). The 20th century whole-basin trophic story of an inter-drumlin lake in an agricultural catchment. Science of the Total Environment 297: 161-173. DOI: 10.1016/S0048-9697(02)00135-3.
  • [30]. Juggins, S. (2003). C2 data analysis. England: University of Newcastle.
  • [31]. Juggins, S. (2013). Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quaternary Science Review 64: 20-32. DOI: 10.1016/j. quascirev.2012.12.014.
  • [32]. Juggins, S., Anderson, N.J., Hobbs, J.M.R. & Heathcote, A.J. (2013). Reconstructing epilimnetic total phosphorus using diatoms: statistical and ecological constraints. Journal of Paleolimnology 49: 373-390. DOI: 10.1007/s10933-013-9678-x.
  • [33]. Kauppinen, E.S. (2013). Trophic state of the Great Masurian Lakes system in the past, present and future – causes, mechanisms and effects of changes, PhD thesis, University of Warsaw: 1-134.
  • [34]. Kauppila, T, Moiso, T. & Salonen, V-P. (2002). A diatom-based inference model for autumn epilimnetic total phosphorus and its application to a presently eutrophic boreal lake. Journal of Paleolimnology 27: 261-273. DOI: 10.1023/A:1014281817358.
  • [35]. Kirilova, E.P., Heiri, O., Bluszcz, P., Zolitschka, B. & Lotter, A. (2011). Climate-driven shifts in diatom assemblages recorded in annually laminated sediments of Sacrower See (NE Germany). Aquatic Sciences 73: 201-210. DOI: 10.1007/s00027-010-0169-0.
  • [36]. Köster, D. & Pienitz, R. (2006). Seasonal diatom variability and paleolimnological inferences – a case study. Journal of Paleolimnology 35: 395-416. DOI: 10.1007/s10933-005-1334-7.
  • [37]. Krammer, K. (2000). The genus Pinnularia. In H. Lange-Bertalot (Ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 1. Ruggell: A.R.G. Gantner Verlag K.G.
  • [38]. Krammer, K. (2002). Cymbella. In H. Lange-Bertalot (Ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 3. Ruggell: A.R.G. Gantner Verlag K.G.
  • [39]. Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/1. Stuttgart & New York: G. Fischer.
  • [40]. Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/2. Stuttgart & New York: G. Fischer.
  • [41]. Krammer, K. & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/3. Stuttgart & Jena: G. Fischer.
  • [42]. Krammer, K. & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. Gesamtliteraturverzeichnis. H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa 2/4. Stuttgart & Jena: G. Fischer.
  • [43]. Lange-Bertalot, H. (2001). Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato, Frustulia. In H. Lange-Bertalot (Ed.), Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 2. Ruggell: A.R.G. Gantner Verlag K.G.
  • [44]. Larocque-Tobler, I., Filipiak, J., Tylmann, W., Bonk, A. & Grosjean, M. (2015). Comparison between chironomidinferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD. Quaternary Science Review 111: 35-50. DOI: 10.1016/j. quascirev.2015.01.001.
  • [45]. Larocque-Tobler, I., Filipiak, J., Tylmann, W., Bonk, A. & Grosjean, M. (2016). Corrigendum to “Comparison between chironomid-inferred mean-August temperature from varved Lake Żabińskie (Poland) and instrumental data since 1896 AD” [Quat. Sci. Rev. 111 (2015) 35-50]. Quaternary Science Review 140: 163-167. DOI: 10.1016/j. quascirev.2016.01.020.
  • [46]. Legendre, P. (1987). Constrained clustering. In P. Legendre & L. Legendre (Eds.), Developments in Numerical Ecology (pp. 289-307). Berlin: Springer-Verlag.
  • [47]. Lepš, J. & Šmilauer, P. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge: Cambridge University Press.
  • [48]. Lotter, A.F. (1998). The recent eutrophication of Beldeggersee (Switzerland) as assessed by fossil diatom assemblages. The Holocene 8(4): 395-405. DOI: 10.1191/095968398674589725.
  • [49]. Marchetto, A., Lami, A., Musazzi, S., Massaferro, J., Langone, L. et al. (2004). Lake Maggiore (N. Italy) trophic story: fossil diatom, plant pigments, and chironomids, and comparison with long-term limnological data. Quaternary International 113: 97-110. DOI: 10.1016/S1040-6182(03)00082-X.
  • [50]. Marszelewski, W. (2005). Zmiany warunków abiotycznych w jeziorach Polski Północno-Wschodniej. Toruń: Wydawnictwo UMK.
  • [51]. Mills, K. & Ryves, D. (2012). Diatom-based models for inferring past water chemistry in western Ugandan crater lakes. Journal of Paleolimnology 48: 383-399. DOI: 10.1007/ s10933-012-9609-2.
  • [52]. Morabito, G., Oggioni, A. & Austoni, M. (2012). Resource ratio and human impact: how diatom assemblages in Lake Maggiore responded to oligotrophication and climatic variability. Hydrobiologia 698: 47-60. DOI: 10.1007/ s10750-012-1094-0.
  • [53]. Ohlendorf, C. & Sturm, M. (2008). A modified method for biogenic silica determination. Journal of Paleolimnology 39: 137-142. DOI: 10.1007/s10933-007-9100-7.
  • [54]. Oksanen J., Blanchet, F.G., Friendly, M., Kindt, R, Legendre, P. et al. (2006). Vegan: community ecology package. http.cran.r-project.org/i
  • [55]. Özkundakci, D., Hamilton, D.P., Gibbs, M.M. (2011). Hypolimnetic phosphorus and nitrogen dynamics in a small, eutrophic lake with a seasonally anoxic hypolimnion. Hydrobiologia 661: 5-20. DOI: 10.1007/s10750-010-0358-9. Development Core Team. (2009). R version 2.9. 2. R Project for Statistical Computing Vienna, Austria.
  • [56]. Reed, J.M. (1998). A diatom-conductivity transfer function for Spanish salt lakes. Journal of Paleolimnology 19: 399-416. DOI: 10.1023/A:1007934627134.
  • [57]. Rühland, K.M., Paterson, A.M. & Smol, J.P. (2015). Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology. DOI: 10.1007/s10933-015-9837-3.
  • [58]. Ryves, D.B., Clarke, A.L., Appleby, P.G. Amsinck, S.L, Jeppesen, E. et al. (2004). Reconstructing the salinity and environment of the Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for brackish lakes and fjords. Canadian Journal of Fisheries and Aquatic Science 61: 1988-2006. DOI: 10.1139/F04-127.
  • [59]. Saros, J. & Fritz, S.C. (2000). Nutrients as a link between ionic concentration/composition and diatom distributions in saline lakes. Journal of Paleolimnology 23: 449-453. DOI: 10.1023/A:1008186431492.
  • [60]. Schrader, H. & Gersonde, R. (1978). Diatoms and silicoflagellates in the eight meters sections of the lower Pleistocene at Capo Rossello. Utrecht Micropaleontological Bulletin 17: 129-176.
  • [61]. Smith, V.H., Joye, S.B. & Howarth, R.W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography 51: 351-355.
  • [62]. Siuda, W., Kaliński, T, Kauppinen, E & Chróst, RJ. (2014). Eutrofïzacja południowej części kompleksu Wielkich Jezior Mazurskich w latach 1977-2011. Technologia Wody 3: 48-62.
  • [63]. ter Braak, C.J.F. (1995). Ordination. In R.H.G. Jongman, CJ.F. ter Braak & O.F.R. van Tongeren (Eds.), Data analysis in community and landscape ecology. Second edition. (pp. 91-173). Cambridge: Cambridge University Press.
  • [64]. Tilman, D., Kilham, S.S. & Kilham, P. (1982). Phytoplankton community ecology: the role of limiting nutrients. Annual Review Ecology and Systematic 13: 349-372. DOI: 10.1146/annurev.es.13.110182.002025.
  • [65]. Tylmann, W., Bonk, A., Goslar, T., Wulf, S. & Grosjean, M. (2016). Calibrating 210Pb dating results with varve chronology and independent chronostratigraphic markers: problems and implications. Quaternary Geochronology 32: 1-10. DOI: 10.1016/j.quageo.2015.11.004.
  • [66]. Tylmann, W., Zolitschka, B., Enters, D. & Ohlendorf, C. (2013). Laminated lake sediments in northeast Poland: distribution, preconditions for formation and potential for paleoenvironmental investigation. Journal of Paleolimnology 50: 487-503. DOI: 10.1007/s10933-013-9741-7.
  • [67]. Wacnik, A., Tylmann, W., Bonk, A., Goslar, T., Enters, et al. (2016). Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: combined pollen, geochemical and historical data. Vegetation History and Archaeobotany 25: 479-498. DOI: 10.1007/s00334-016-0565-z.
  • [68]. Van Dam, H., Mertens, A. & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117-133. DOI: 10.1007/BF02334251.
  • [69]. Zolitschka, B., Francus, P., Ojala, A.E.K. & Schimmelmann, A. (2015). Varves in lake sediments – a review. Quaternary Science Reviews 117: 1-41. DOI: 10.1016/j. quascirev.2015.03.019.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6eacc8e-bc12-4d74-8705-7056d6a14479
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.