PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the tumor temperature distribution in anatomically correct female breast phantom

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie rozkładu temperatury guza w naturalistycznym fantomie gruczołu piersiowego
Języki publikacji
EN
Abstrakty
EN
The presented paper focuses on a numerical analysis of temperature in the anatomical model of the female breast with a strictly defined level of power generated by the EMF source in pathological tissue saturated with ferrofluid. The aim of this study was to examine the effect of blood perfusion rate models on the resultant tumor temperature. The four tumor perfusion models were subjected to comparative analysis: constant, linear, nonlinear and completely free of blood flow. The authors have shown that taking into account the various temperature dependences of blood perfusion models within the treated tissue might play an important role in the complex process of female breast cancer treatment planning.
PL
Przedstawiona praca skupia się na numerycznej analizie temperatury w anatomicznym modelu gruczołu piersiowego kobiety o ściśle określonym poziomie mocy generowanej przez źródło PEM w patologicznej tkance nasyconej ferrofluidem. Celem tej pracy było zbadanie wpływu perfuzji krwi na wypadkową temperaturę guza. Analizie porównawczej poddano cztery modele perfuzji w guzie: stały, liniowy, nieliniowy oraz model całkowicie pozbawiony przepływu krwi. Autorzy pracy wykazali, że uwzględnienie różnych zależności temperaturowych dla modeli perfuzji krwi w leczonej tkance, może odgrywać istotną rolę w złożonym procesie planowania leczenia nowotworów piersi.
Rocznik
Strony
146--149
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Department of Electrical and Power Engineering, al. Mickiewicza 30, 30-059 Krakow
  • University of Life Sciences in Lublin, Department of Applied Mathematics and Computer Sciences, ul. Akademicka 13, 20-950 Lublin, Poland
  • University College of Enterprise and Administration in Lublin, Faculty of Technical Sciences, ul. Bursaki 12, 20-150 Lublin Poland
Bibliografia
  • [1] Wyszynska E., et al., Electrotherapy - Therapy Possibilities Across the Ages and Today, 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE), IEEE, (2019), 263-266. DOI: 10.23919/PTZE.2019.8781703
  • [2] Syrek P., Uncertainty Problem as Illustrated by Magnetotherapy, Applied Computational Electromagnetics Society Journal, 34 (2019), No. 9, 1445-1452.
  • [3] Woesner M.E., What is old is new again: The use of wholebody hyperthermia for depression recalls the medicinal uses of hyperthermia, fever therapy, and hydrotherapy, Current Neurobiology, 10 (2019), No. 2, 56-66.
  • [4] Gas P., Wyszkowska J., Influence of multi-tine electrode configuration in realistic hepatic RF ablative heating, Archives of Electrical Engineering, 68 (2019), No. 3, 521-533.
  • [5] Plawiak-Mowna A., et al., Occupational EMF exposure and risk of breast cancer, Przeglad Elektrotechniczny, 93 (2017), No. 1, 177-180.
  • [6] Sawicki B., and Miaskowski A., Nonlinear higher-order transient solver for magnetic fluid hyperthermia, Journal of Computational and Applied Mathematics, 270 (2014), 143-151.
  • [7] Gas P., and Miaskowski A., Specifying the ferrofluid parameters important from the viewpoint of Magnetic Fluid Hyperthermia, in 2015 Selected Problems of Electrical Engineering and Electronics (WZEE), IEEE, (2015), 1-6. DOI: 10.1109/WZEE.2015.7394040
  • [8] Lanier O.L., et al., Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia, International Journal of Hyperthermia, 36 (2019), No. 1, 687-701.
  • [9] Michalowska J., Wac-Wlodarczyk A., The analysis of an absorption rate in view of electromagnetic exposure effects exemplified by the breast cancer, European Journal of Medical Technologies, 2 (2017), No. 15, 29-36.
  • [10] Gas P., Miaskowski A., SAR optimization for multi-dipole antenna array with regard to local hyperthermia, Przeglad Elektrotechniczny, 95 (2019), No. 1, 17-20.
  • [11] Kumariet al., SAR analysis of directive antenna on anatomically real breast phantoms for microwave holography, Microwave and Optical Technology Letters (2019). DOI: 10.1002/mop.32037
  • [12] Singh S.P. Microwave Thermotherapy and its Clinical Applications, in 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), IEEE, (2019), 1-4.
  • [13] Ramu S., et al., Diagnosis of Cancer Using Hybrid Clustering and Convolution Neural Network from Breast Thermal Image, Journal of Testing and Evaluation, 47 (2019), No. 6, 3975-3987.
  • [14] El Fatimi A., et al., UWB antenna with circular patch for earley breast cancer detection, Telkomnika, 17 (2019), No. 5, 2370-2377.
  • [15] Prasad B., et al., Role of Simulations in the Treatment Planning of Radiofrequency Hyperthermia Therapy in Clinics, Journal of Oncology, 2019 (2019), 9685476.
  • [16] Bekovi c M., et al., Numerical Model for Determining the Magnetic Loss of Magnetic Fluids, Materials, 12 (2019), No. 4, 591.
  • [17] Kurgan E ., and Gas P., Simulation of the electromagnetic field and temperature distribution in human tissue in RF hyperthermia, Przeglad Elektrotechniczny, 91 (2015), No. 1, 169-172. DOI: 10.15199/48.2015.01.37
  • [18] Szczech M., Influence of Selected Parameters on the Reseal Instability Mechanism in Magnetic Fluid Seals, Journal of Magnetics, 24 (2019), No. 1, 32-38.
  • [19] Gill H.S., et al., Computational study on effect of microwave induced hyperthermia on breast tumor, International Journal of Mechanical and Production Engineering Research and Development, 7 (2017), No. 5, 343-358.
  • [20] Burfeindt M.J., et al., MRI-derived 3-D-printed breast phantom for microwave breast imaging validation, IEEE Antennas and Wireless Propagation Letters, 11 (2012), 1610-1613.
  • [21] Joachimowicz N., et al., Anthropomorphic breast and head phantoms for microwave imaging, Diagnostics, 8 (2018), No. 4, 85.
  • [22] Patil H.M., Maniyeri R., Finite difference method based analysis of bio-heat transfer in human breast cyst, Thermal Science and Engineering Progress, 10 (2019), 42-47.
  • [23] Balusu, et al., Modelling bio-heat transfer in breast cysts using finite element analysis. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV), IEEE, (2014), 1-4.
  • [24] Gambin B., et al.,Ultrasonic Measurement of Temperature Rise in Breast Cyst and in Neighbouring Tissues as a Method of Tissue Differentiation, Archives of Acoustics, 41 (2016), No. 4, 791-798.
  • [25] Sobkiewicz P., et al., Estimating the temperature of breast malignant tissue during microwave ablation process, Przeglad Elektrotechniczny, 95 (2019), No. 12, 212-215.
  • [26] Singh S., Repaka R., Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation, Applied Thermal Engineering, 125 (2017), 443-451.
  • [27] Michalowska-Samonek J., Miaskowski A., Wac-Wlodarczyk A., Numerical models of human breast, Przeglad Elektrotechniczny, 85 (2009), No. 12, 125-127.
  • [28] Pennes H.H, Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm, Journal of Applied Physiology, 85 (1998), No. 1, 5-34.
  • [29] Lang M, et al., Impact of nonlinear heat transfer on temperature control in regional hyperthermia, IEEE Transactions on Biomedical Engineering, 46 (1999), 1129-1138.
  • [30] Kengne E., Lakhssassi A., Analytico-numerical study of bio-heat transfer problems with temperature-dependent perfusion, The European Physical Journal Plus, 130 (2015), No. 5, 89.
  • [31] Hasgall P.A., et al., IT'IS Database for thermal and electromagnetic parameters of biological tissues, Version 4.0, May 15th 2018.
  • [32] https://www.zurichmedtech.com/sim4life/[12.10.2018]
  • [33] Kashkooli, et al., Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor- Computational approach, Microvascular Research, 123 (2019), 111-124.
  • [34] Muntoni G., et al., A Blood Perfusion Model of a RMS Tumor in a Local Hyperthermia Multi-Physic Scenario: A Preliminary Study, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3 (2019), No. 1, 71-78.
  • [35] Paruch M., Mathematical Modeling of Breast Tumor Destruction using Fast Heating during Radiofrequency Ablation, Materials, 13 (2020), No. 1, 136.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6e8f3ef-517a-4225-8df4-ec040b3c3ad5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.