Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Aiming at the problem that the wear feature information of the ball screw meta-action unit is easily disturbed by noise and the wear state recognition accuracy is not high, a wear state recognition method based on parameter optimization VMD and improved Bilstm was proposed.Firstly, Tent chaotic mapping and adaptive positive cosine algorithm are used to improve Northern Goshawk Optimisation Algorithm (INGO); Secondly, the INGO-VMD was used to decompose the collected vibration signals. The power spectrum entropy, alignment entropy and fuzzy entropy of the IMF components with large correlation after decomposition are calculated to construct the feature information matrix. Finally, the described feature information matrix with labels was input into the Bayesian Optimization Bilstm network model for training, and the Softmax classifier was used to classify the wear state categories. In order to verify the superiority of the proposed method, it is compared with VMD-Lstm, VMD-Bilstm and VMD-Bo-Bilstm models, and the results show that the designed method has higher recognition accuracy.
Czasopismo
Rocznik
Tom
Strony
art. no. 191461
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
- School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
- School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
- School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
- School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
- School of Mechanical Engineering, Xi’an University of Science and Technology, China
autor
- School of Mechanical Engineering, Xi’an University of Science and Technology, China
Bibliografia
- 1. Li, Y.; Li, J.; Liu, S.; Wen, S.; Li, D.; Zhang, G., Meta-action unit importance identification method of electromechanical product. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 2022, 236, (16), 9027-9036. doi: 10.1177/09544062221091776.
- 2. Li, Y.; Zhang, X.; Ran, Y.; Zhang, W.; Zhang, G., Reliability and Modal Analysis of Key Meta-Action Unit for CNC Machine Tool. Ieee Access 2019, 7, 23640-23655. doi: 10.1109/access.2019.2899623.
- 3. Shan, P.; Lv, H.; Yu, L.; Ge, H.; Li, Y.; Gu, L., A Multisensor Data Fusion Method for Ball Screw Fault Diagnosis Based on Convolutional Neural Network With Selected Channels. Ieee Sensors Journal 2020, 20, (14), 7896-7905. doi: 10.1109/jsen.2020.2980868.
- 4. Pandhare, V.; Miller, M.; Vogl, G. W.; Lee, J., Ball Screw Health Monitoring With Inertial Sensors. Ieee Transactions on Industrial Informatics 2023, 19, (6), 7323-7334. doi: 10.1109/tii.2022.3210999.
- 5. Zhang, X.; Luo, T.; Han, T.; Gao, H., A novel performance degradation prognostics approach and its application on ball screw. Measurement 2022, 195. doi: 10.1016/j.measurement.2022.111184.
- 6. Jia, P.; Rong, Y.; Huang, Y., Condition monitoring of the feed drive system of a machine tool based on long-term operational modal analysis. International Journal of Machine Tools & Manufacture 2019, 146. doi: 10.1016/j.ijmachtools.2019.103454.
- 7. Butler, Q.; Ziada, Y.; Stephenson, D.; Gadsden, S. A., Condition Monitoring of Machine Tool Feed Drives: A Review. Journal of Manufacturing Science and Engineering-Transactions of the Asme 2022, 144, (10). doi: 10.1115/1.4054516.
- 8. Yi-Cheng, H.; Yi-Keng, H., Applying a support vector machine for hollow ball screw condition-based classification using feature extraction. Proceedings of the Institution of Mechanical Engineers 2022, 236, (14), 1839-1852. doi:10.1177/0954405420958842.
- 9. Benker, M.; Zaeh, M. F., Condition monitoring of ball screw feed drives using convolutional neural networks. Cirp Annals-Manufacturing Technology 2022, 71, (1), 313-316. doi: 10.1016/j.cirp.2022.03.017.
- 10. Li, R.; Wei, P.; Liu, X.; Li, C.; Ni, J.; Zhao, W.; Zhao, L.; Hou, K., Cutting tool wear state recognition based on a channel-space attention mechanism. Journal of Manufacturing Systems 2023, 69, 135-149. doi: 10.1016/j.jmsy.2023.06.010.
- 11. Xue, Y.-J.; Cao, J.-X.; Wang, D.-X.; Du, H.-K.; Yao, Y., Application of the Variational-Mode Decomposition for Seismic Time-frequency Analysis. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2016, 9, (8), 3821-3831. doi: 10.1109/jstars.2016.2529702.
- 12. Zhang, Y.; Qi, X.; Wang, T.; He, Y., Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals. Sensors 2023, 23, (10). doi: 10.3390/s23104595.
- 13. Xie, Z.; Yu, D.; Zhan, C.; Zhao, Q.; Wang, J.; Liu, J.; Liu, J., Ball screw fault diagnosis based on continuous wavelet transform and two-dimensional convolution neural network. Measurement & Control 2023, 56, (3-4), 518-528. doi: 10.1177/00202940221107620.
- 14. Lee, W. G.; Lee, J. W.; Hong, M. S.; Nam, S.-H.; Jeon, Y.; Lee, M. G., Failure Diagnosis System for a Ball-Screw by Using Vibration Signals. Shock and Vibration 2015, 2015. doi: 10.1155/2015/435870.
- 15. Jinde, Z.; Miaoxian, S.; Wanming, Y.; Jinyu, T.; Ziwei, P., Improved uniform phase empirical mode decomposition and its application in machinery fault diagnosis. Measurement 2021, 179. doi: 10.1016/j.measurement.2021.109425.
- 16. Feng, Z.; Zhang, D.; Zuo, M. J., Adaptive Mode Decomposition Methods and Their Applications in Signal Analysis for Machinery Fault Diagnosis: A Review With Examples. Ieee Access 2017, 5, 24301-24331. doi: 10.1109/access.2017.2766232.
- 17. Zhenzhen, J., Research on fault diagnosis method of bearing based on parameter optimization VMD and improved DBN. Journal of Vibroengineering 2023, 25, (6), 1068-1082. doi: 10.1016/j.acme.2016.05.003.
- 18. Zhao, H.; Liu, H.; Xu, J.; Guo, C.; Deng, W., Research on a fault diagnosis method of rolling bearings using variation mode decomposition and deep belief network. Journal of Mechanical Science and Technology 2019, 33, (9), 4165-4172. doi: 10.1007/s12206-019-0811-2.
- 19. Dragomiretskiy, K.; Zosso, D., Variational Mode Decomposition. IEEE Trans. Signal Processing 2014, 62, (3), 531-544. doi: 10.1109/TSP.2013.2288675.
- 20. Zhang, X.; Zhao, J., COMPOUND FAULT DETECTION IN GEARBOX BASED ON TIME SYNCHRONOUS RESAMPLE AND ADAPTIVE VARIATIONAL MODE DECOMPOSITION. Eksploatacja I Niezawodnosc-Maintenance and Reliability 2020, 22, (1), 161-169. doi: 10.17531/ein.2020.1.19.
- 21. Ziyou, Z.; Wenhua, C.; Ce, Y., Adaptive range selection for parameter optimization of VMD algorithm in rolling bearing fault diagnosis under strong background noise. Journal of Mechanical Science and Technology 2023, 37, (11), 5759-5773. doi: 10.1007/s12206-023-1015-3.
- 22. Li, G.; Deng, H.; Yang, H., Traffic flow prediction model based on improved variational mode decomposition and error correction. Alexandria Engineering Journal 2023, 76, 361-389. doi: 10.1016/j.aej.2023.06.008.
- 23. Xu, F. J.; Jing, R. R.; Zhang, Y.; Liu, Q.; Wu, Y. A., High accuracy key feature extraction approach for the non-stationary signals measurement based on NGO-VMD noise reduction and CNN-LSTM. Measurement Science and Technology 2024, 35, (1). doi: 10.1088/1361-6501/ad031c.
- 24. Li, K.; Huang, H. S.; Fu, S. W.; Ma, C.; Fan, Q. S.; Zhu, Y. W., A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems. Computer Methods in Applied Mechanics and Engineering 2023, 415. doi: 10.1016/j.cma.2023.116199.
- 25. Laddada, S.; Si-Chaib, M. O.; Benkedjouh, T.; Drai, R., Tool wear condition monitoring based on wavelet transform and improved extreme learning machine. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2020, 234, (5), 1057-1068. doi: 10.1177/0954406219888544.
- 26. Ou, J.; Li, H.; Huang, G.; Yang, G., Intelligent analysis of tool wear state using stacked denoising autoencoder with online sequential-extreme learning machine. Measurement 2021, 167. doi: 10.1016/j.measurement.2020.108153.
- 27. Zhang, B. C.; Sun, S. Q.; Yin, X. J.; He, W. D.; Gao, Z., Research on Gearbox Fault Diagnosis Method Based on VMD and Optimized LSTM. Applied Sciences-Basel 2023, 13, (21). doi: 10.3390/app132111637.
- 28. Liang, T.; Meng, Z.; Xie, G.; Fan, S., Multi-Running State Health Assessment of Wind Turbines Drive System Based on BiLSTM and Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 4, 2024 GMM. Ieee Access 2020, 8, 143042-143054. doi: 10.1109/access.2020.3014371.
- 29. Wu, Z.; Wang, Z.; Wei, H.; Ren, J.; Yuan, Y.; Wang, T.; Duan, W.; Wei, H.; Wang, S., Remaining useful life prediction for equipment based on RF-BiLSTM. Aip Advances 2022, 12, (11). doi: 10.1063/5.0125885.
- 30. Jinsong, Z.; Jingbo, P.; Weixuan, W.; Shuaiguo, L., Aeroengine Working Condition Recognition Based on MsCNN-BiLSTM. Sensors 2022, 22, (18), 7071-7071. doi: 10.3390/s22187071.
- 31. Chen, Q. P.; Xie, Q. S.; Yuan, Q. N.; Huang, H. S.; Li, Y. T., Research on a Real-Time Monitoring Method for the Wear State of a Tool Based on a Convolutional Bidirectional LSTM Model. Symmetry-Basel 2019, 11, (10). doi: 10.3390/sym11101233.
- 32. Zhaosu, L.; Jianfeng, Y., Research on Short-term Load Forecasting Based on GWO-BILSTM. Journal of Physics: Conference Series 2022, 2290, (1). doi: 10.1088/1742-6596/2290/1/012100.
- 33. M., L. A.; M., d. S. L. F.; M., d. S. C.; Yulong, L.; Junfa, L.; Shengquan, L.; Shutao, W.; Donglong, L.; Genbao, Z., Meta-action unit importance identification method of electromechanical product. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2022, 236, (16), 9027-9036. doi: 10.1177/09544062221091776.
- 34. Dehghani, M.; Hubalovsky, S.; Trojovsky, P., Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems. Ieee Access 2021, 9, 162059-162080. doi: 10.1109/access.2021.3133286.
- 35. Zheng, Z.; Xin, G., Fault Feature Extraction of Hydraulic Pumps Based on Symplectic Geometry Mode Decomposition and Power Spectral Entropy. Entropy 2019, 21, (5). doi: 10.3390/e21050476.
- 36. Sun, H.; Wu, C.; Liang, X.; Zeng, Q., Identification of Multiple Faults in Gearbox Based on Multipoint Optional Minimum Entropy Deconvolution Adjusted and Permutation Entropy. Entropy 2018, 20, (11). doi: 10.3390/e20110850.
- 37. Minhas, A. S.; Sharma, N.; Singh, G.; Kankar, P. K.; Singh, S., Improvement in classification accuracy and computational speed in bearing fault diagnosis using multiscale fuzzy entropy. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2020, 42, (11). doi: 10.1007/s40430-020-02671-1.
- 38. Xing, X.; Chengxing, L.; Yun, Z.; Xiaoshu, L., Short‐term traffic flow prediction based on whale optimization algorithm optimized BiLSTM_Attention. Concurrency and Computation: Practice and Experience 2022, 34, (10). doi: 10.1002/cpe.6782.
- 39. Chao, Y.; Baoping, C.; Rui, Z.; Zhexian, Z.; Xiangdi, K.; Xiaoyan, S.; Yiliu, L.; Haidong, S.; Javed, A. K., Cross-validation enhanced digital twin driven fault diagnosis methodology for minor faults of subsea production control system. Mechanical Systems and Signal Processing 2023, 204. doi: 10.1016/J.YMSSP.2023.110813
- 40. Yang, C.; Cai, B. P.; Wu, Q. B.; Wang, C. Y. S.; Ge, W. F.; Hu, Z. M.; Zhu, W.; Zhang, L.; Wang, L. T., Digital twin-driven fault diagnosis method for composite faults by combining virtual and real data. Journal of Industrial Information Integration 2023, 33. doi:10.1016/j.jii.2023.100469.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6e14690-e40b-4061-b085-25d6b5cd0358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.