PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the symmetry plane boundary condition on the planing multihull calm water resistance test. CFD to towing tank comparison

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article present results of the comparison between numerical simulation (utilizing Computational Fluid Dynamics) and towing tank experiment of the multihull vessel. Effect of the symmetry plane boundary condition on the resistance has been investigated. Reynolds-Averaged Navier Stokes equations with k-𝜔 turbulence model has been used to calculate resistance of the hull with two degrees of freedom (2-DOF). Calculation has been done using OpenFOAM software package. Governing equations of fluid motion, together with the concept of the mesh and boundary condition has been presented in the first section of this work. Conclusion about calculating resistance of the multihull vessels has been made, after short presentation of the results.
Rocznik
Strony
385--409
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
  • Maritime University of Szczecin, Poland
Bibliografia
  • 1.Abramowski, T., and Sugalski, K. (2017). Energy saving procedures for fishing vessels by means of numerical optimization of hull resistance. Scientific Journals of the Maritime University of Szczecin 121, pp. 19-27.
  • 2.Blazek, J. (2005). Computational Fluid Dynamics: Principles and applications. Elsevier.
  • 3.Ferziger, J.H., and Perić, M. (2002). Computational Methods for Fluid Dynamics. Berlin: Springer-Verlag.
  • 4.Kim, G.H., and Park, S. (2017). Development of a numerical tool for efficient and robust prediction of ship resistance. International Journal of Naval Architecture and Ocean Engineering 9, pp. 537-551.
  • 5.Lomax, H., Pulliam, T.H., and Zingg, D.W. (2001). Fundamentals of Computational Fluid Dynamics. Berlin: Springer-Verlag.
  • 6.Ozdemir, Y.H., and Barlas, B. (2017). Numerical study of ship motions and added resistance in regular incident waves of KVLCC2 model. International Journal of Naval Architecture and Ocean Engineering 9, pp. 149-159.
  • 7.Suastika, K., Hidayat, A., and Riyadi, S. (2017). Effects of the application of a stern foil on ship resistance: a case study of an Orela crew boat. International Journal of Technology 8, pp. 1266-1275.
  • 8.Sugalski, K. (2014). Fishing vessel hull design and towing resistance calculation by the CFD methods. Scientific Journals of the Maritime University of Szczecin.
  • 9.Suska, W.L. (2010). Motorówki i małe kutry motorowe - wypornościowe, półwypornościowe/półślizgowe i ślizgowe. Gdańsk: Fundacja Promocji Przemysłu Okrętowego i Gospodarki Morskiej.
  • 10.Szelangiewicz, T., Żelazny, K., and Abramowski, T. (2010). Numerical analysis of effect of asymmetric stern of ship on its screw propeller efficiency. Polish Maritime Research 17, pp. 13-16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6d42678-15e2-4ab1-a442-ca85e0099e0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.