PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The characteristics of a novel environmentally friendly countermeasure against bridge abutments scour depth

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Destruction of many bridges around the world has been found to be due to the collapse of its abutments owing to the formation of scour. Various methods have been proposed so far to reduce the scour depth, and in this study, a new and environmentally friendly method, namely triangular vanes made with six-pillar concrete (TV-SPC) elements, has been experimentally studied. For this purpose, various experiments were carried out without and with installing the TV-SPC at different distances (0.5L, 1L and 1.5L in which L = abutment length), three different lengths, in different rows (single, double and triple) and under two different hydraulic conditions. At the end of each experiment, the bed topography around the abutment was measured and the maximum scour depth and its location were extracted. The results show that for better performance, the TV-SPC should be attached to the bank at distance of 0.75L or 1 L . The longest TV-SPS found better to reduce the scour depth. A single L-TV-SPC installed at 0.75L upstream of the abutment can result in 68% and 78% scour depth reduction at high and low flow conditions, respectively. The reduction in scour depth can be increased up to 82% by installing three rows of TV-SPC.
Słowa kluczowe
Czasopismo
Rocznik
Strony
357--369
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
  • Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
autor
  • Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
autor
  • University of Zanjan, Zanjan, Iran
Bibliografia
  • 1. Bahrami-Yarahmadi B, Shafai Bejestan M (2016) Sediment management and flow patterns at river bend due to triangular vanes attached to the bank. J Hydro Environ Res Elsevier Publ 10:6475. https://doi.org/10.1016/j.jher.2015.10.002
  • 2. Bahrami-Yarahmadi M, Pagliara S, Yabarehpour E, Najafi N (2020) Study of scour and flow patterns around triangular-shaped spur dikes. KSCE J Civ Eng 24:3279-3288. https://doi.org/10.1007/ s12205-020-2261-x
  • 3. Ballio F, Teruzzi A, Radice A (2009) Constriction effects in clear water scour at abutments. J Hydraul Eng 135(2):140-145. https://doi. org/10.1061/(ASCE)0733-9429(2009)135:2(140)
  • 4. Balouchi B, Shafai-Bejestan M, Ruther N, Rahmanshahi M (2022) Experimental investigation of flow pattern over a fully developed bed at a 60° river confluence in large floods. Acta Geophys 70:2283-2296. https://doi.org/10.1007/s11600-022-00924-2
  • 5. Barkdoll BD (2003) Discussion of “use of vanes for control of scour at vertical wall abutments” by PA Johnson, RD Hey, M Tessier, DL Rosgen. J Hydraul Eng 129(3):246-246. https://doi.org/10.1061/ (ASCE)0733-9429(2003)129:3(246)
  • 6. Bhuiyan F, Hey RD, Wormleaton PR (2010) Bank-attached vanes for bank erosion control and restoration of river meanders. J Hydraul Eng 136(9):583-596. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000217
  • 7. Brian HL, Barkdoll D, Kuhnle R, Alonso C (2006) Parallel walls as an abutment scour countermeasure. J Hydraul Eng 132(5):510-520. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:5(510)
  • 8. Cardoso AH, Fael CM (2009) Protecting vertical-wall abutments with riprap mattresses. J Hydraul Eng 135(6):457-465. https://doi.org/ 10.1061/(ASCE)HY.1943-7900.0000040
  • 9. Chiew YM (1992) Scour protection at bridge piers. J Hydraul Eng 118(9):1260-1269. https://doi. org/10.1061/(ASCE)0733-9429(1992)118:9(1260)
  • 10. Chiew YM, Lim FH (2000) Failure behavior of riprap layer at bridge pier under live bed conditions. J Hydraul Eng 126(1):43-55. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(43)
  • 11. Cunningham R, Lyn DA (2010) A laboratory study of bendway weirs as a bank erosion countermeasure. J Hydraul Eng 142(6):04016004. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001117
  • 12. Derrick DL, Pokrefke TJ, Boyd MB, Crutchfield JP, Henderson RR (1994) Design and development of bendway weir for the dogtooth bend reach, Mississippi river: hydraulic model investigation. Technical report No. HL-94-10, Waterways experiment station, Vicksburg, Mississippi
  • 13. Dey S, Barbhuiya AK (2004) Clear-water scour at abutments in thinly armored beds. J Hydraul Eng 130(7):622-634. https:// doi.org/10.1061/(ASCE)0733-9429(2004)130:7(622)
  • 14. Dongol DMS (1993) Local scour at bridge abutments. In: PhD thesis, University of Auckland, Auckland, New Zealand. http://hdl. handle.net/2292/51088
  • 15. Federal Interagency Stream Restoration Working Group _FISRWG (1998) Stream corridor restoration: principles, processes, and practices. National technical information services, U.S. Dept. of commerce, Springfield, Va
  • 16. Ferro V, Shokrian-Hajibehzad M, Shafai-Bejestan M, Kashefipour SM (2019) Scour around a permeable groin combined with a triangular vane in river bends. J Irrig Drain Eng 145(3):04019003. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001380
  • 17. Gaudio R, Tafarojnoruz A, Calomino F (2012) Combined flow-altering countermeasures against bridge pier scour. J Hydraul Res 50(1):35-43. https://doi.org/10.1080/00221686.2011.649548
  • 18. Hakim M, Bahrami Yarahmadi M, Kashefipour SM (2022) Use of spur dikes with different permeability levels for protecting bridge abutment against local scour under unsteady flow conditions. Can J Civ Eng 49(12):1842-1854. https://doi.org/10. 1139/cjce-2021-0476
  • 19. Hemdan Nasr-Allah T, Moussa YAM, Abdel-Aal GM, Awad AS (2016) Experimental and numerical simulation of scour at bridge abutment provided with different arrangements of collars. Alex Eng J 55(2):1455-1463. https://doi.org/10.1016/j.aej. 2016.01.021
  • 20. Hey RD (1994) Environmentally sensitive river engineering. Rivers Handb Hydrol Ecol Princ. https://doi.org/10.1002/9781444313 871.ch18
  • 21. Johnson PA, Hey RD, Tessier M, Rosgen DL (2001) Use of vanes for control of scour at vertical wall abutments. J Hydraul Eng 127(9):772-778. https://doi. org/10.1061/(ASCE)0733-9429(2001)127:9(772)
  • 22. Kalamizadeh M, Kamanbedast A, Shafai-Bejestan M, Masjedi AR, Hasonizadeh H (2021) Laboratory evaluation of permeable triangular vanes with six-pillar elements placed in the outer bend of a 180° flume. Arab J Geosci 14(4):1-12. https://doi.org/10. 1007/s12517-021-06498-5
  • 23. Kandasamy JK (1989) Abutment scour. In: PhD thesis, University of Auckland, Auckland, New Zealand. http://hdl.handle.net/ 2292/51222
  • 24. Khajavi M, Kashefipour SM, Shafai Bejestan M (2022) Bridge abutment protection against scouring for unsteady flow conditions. Period Polytech Civ Eng 66(1):310-322. https://doi. org/10. 3311/PPci.18892
  • 25. Khozeymehnezhad H, Ghomshi M (2013) Comparison of symmetrical and unsymmetrical rectangular collars on scour reduction of bridge abutment. Middle East J Sci Res 18(8):1099-1104. https://doi.org/10.5829/idosi.mejsr.2013.18.8.11834
  • 26. Koochak P, Kashefipour SM, Ghomeshi M, Fathi A (2018) Investigation of the effect of the Bandal-like permeability on the maximum scour depth in a 90-degree bend and in submerged condition. J Mar Sci Technol 17(1):97-109. https://doi.org/10. 22113/jmst.2017.60804.1897
  • 27. Korkut R, Martinez EJ, Morales R, Ettema R, Barkdoll B (2007) Geobag performance as scour countermeasure for bridge abutments. J Hydraul Eng 133(4):431-439. https://doi.org/10.1061/ (ASCE)0733-9429(2007)133:4(431)
  • 28. Khan ZU, Ahmad A, Pasha GA (2022) Countermeasures of abutment scouring-An experimental approach. 6th international Conference on Energy, Environment and Sustainable Development
  • 29. Kumar V, Ranga Raju KG, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125(12):1302-1305. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:12(1302)
  • 30. Kwan TF (1987) A study of abutment scour. In: PhD thesis, University of Auckland, Auckland, New Zealand. http://hdl.handle.net/ 2292/51255
  • 31. Lagasse PF, Clopper PE, Pagán-Ortiz JE, Zevenbergen LW, Arneson LA, Schall JD, Girard LG (2009) Bridge scour and stream instability countermeasures: experience, selection, and design guidance-third edition. FHWA NHI 01-003, HEC-2. Federal highway Administration, Washington DC
  • 32. Laursen EM, Toch A (1956) Scour around bridge piers and abutments. Iowa highways research board IA
  • 33. Li H, Kuhnle R, Barkdoll B (2005) Spur dikes as an abutment scour countermeasure. World Water Environ Resour Congr. https://doi. org/10.1061/40792(173)444
  • 34. Melville BW (1992) Local scour at bridge abutments. J Hydraul Eng 118(4):615-631. https://doi. org/10.1061/(ASCE)0733-9429(1992)118:4(615)
  • 35. Melville BW (1997) Pier and abutment scour: integrated approach. J Hydraul Eng 123(2):125-136. https://doi.org/10.1061/(ASCE) 0733-9429(1997)123:2(125)
  • 36. Melville B, van Ballegooy S, Coleman S, Barkdoll B (2006a) Countermeasure toe protection at spill-through abutments. J Hydraul Eng 132(3):235-245. https://doi. org/10.1061/(ASCE)0733-9429(2006)132:3(235)
  • 37. Melville B, van Ballegooy S, Coleman S, Barkdoll B (2006b) Scour countermeasures for wing-wall abutments. J Hydraul Eng 132(6):563-574. https://doi. org/10.1061/(ASCE)0733-9429(2006)132:6(563)
  • 38. Najjaran E, Kamanbedast AA, Shafai Bejestan M, Masjedi AR, Hasonizadeh H (2020) Laboratory evaluation of the effect of permable vanes distance using six-pillar concrete elements on the bend migration. J Water Soil Resource Conservation 10(1):31-44
  • 39. Oliveto G, Hager WH (2002) Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128(9):811-820. https://doi. org/10.1061/(ASCE)0733-9429(2002)128:9(811)
  • 40. Alabi PD (2006) Time development of local scour at a bridge pier fitted with a collar. In: MS thesis, Univ. of Saskatchewan, Saskatoon, Saskatchewan, Canada. http://hdl.handle.net/10388/etd-08172 006-232302
  • 41. Radice A, Lauva S (2012) On flow-altering countermeasures for scour at vertical-wall abutment. Arch Hydro Eng Environ Mech 59(3-4):137-153. https://doi.org/10.2478/heem-2013-0008-y
  • 42. Radice A, Davari V (2014) Roughening elements as abutment scour countermeasures. J Hydraul Eng 140(8):06014014. https://doi.org/ 10.1061/(ASCE)HY.1943-7900.0000892
  • 43. Raikar RV, Hong JH, Deshmukh AR, Guo WD (2022) Parametric study on abutment scour under unsteady flow. Water 14:1820. https:// doi.org/10.3390/w1411182
  • 44. Rosgen DL (1996) Applied river morphology. Wildland Hydrology Books, 1481 Stevens Lake Road, Pagosa Springs, Co. 81147, pp. 385
  • 45. Rosgen DL (2001) The cross vane, w-weir and j-hook structures: their description, design and application for stream stabilization and river restoration. In: Proceeding of the, Wetland engineering and river restoration conf. (CD ROM), ASCE, Reno, Nev. https://doi. org/10.1061/40581(2001)72
  • 46. Sardasteh A, Ayyoubzadeh SA, Shafai Bejestan M, Mohammad-Vali-Samani J (2019) River bed sediment management by the winged bandal-like structure and selection of optimum structure using ranking of SAW and TOPSIS methods. Iran J Sci Tech-nol Trans Civ Eng 44(1):1373-1383. https://doi.org/10.1007/ s40996-019-00315-6
  • 47. Shokrian Hajibehzad M, Shafai Bejestan M, Ferro V (2020) Investigating the performance of enhanced permable groins in series. Water 12(12):3531. https://doi.org/10.3390/w12123531
  • 48. Shafai Bejestan M, Khademi K, Khozeimenejad H (2015) Submerged vane attached to abutment as scour countermeasure. Ain Shams Eng J 6(3):775-783. https://doi.org/10.1016/j.asej.2015.02.006
  • 49. Shafai Bejestan M, Yabbare Poor E, Kashefipour SM (2021) Enhancing transverse mixing by using triangular vane in the straight channel. Ain Shams Eng J 12(2):1385-2139. https://doi.org/10.1016/j.asej. 2020.08.032
  • 50. Shields FD, Knight SS, Cooper CM (1995) Incised stream physical habitat restoration with stone weirs. Regul Rivers Res Manag 10(2-4):181-198. https://doi.org/10.1002/rrr.3450100213. (Notes, Wildland Hydrology, Pagosa Springs, Colo.)
  • 51. Shokrian MH, Shafai Bejestan M, Ferro V, Avarand R (2022) Mean flow, secondary currents and bed shear stress at a 180-degree laboratory bend with and without enhanced permeable groins as an eco-friendly river structure. J Hydro Environ Res 44:12-22. https://doi.org/10.1016/j.jher.2022.07.004
  • 52. Teraguchi H, Nakagawa H, Kawaike K, Baba Y, Zhang H (2011) Alternative method for river training works bandallike structures. J Japan Soc Civ Eng Ser B1 (hydraulic Eng) 67(4):151-156
  • 53. Umbrell ER, Young GK, Stein SM, Jones JS (1998) Clear-water contraction scour under bridges in pressure flow. J Hydraul Eng 124(2):236-240. https://doi. org/10.1061/(ASCE)0733-9429(1998)124:2(236)
  • 54. Wong WH (1982) Scour at bridge abutments. Report no. 275, School of engineering, University of Auckland, Auckland, New Zealand
  • 55. Zhang H, Nakagawa H, Baba Y, Kawaike K, Teraguchi H (2010) Three-dimensional flow around bandal-like structures. Annu J Hydraulic Eng JSCE 54:175-180
  • 56. Zolghadr M, Shafai Bejestan M (2021) Six-legged Concrete (SLC) elements as scour countermeasures at wing wall bridge abutments. Int J River Basin Manag 19(3):319-325. https://doi.org/10.1080/ 15715124.2020.1726357
  • 57. Zolghadr M, Shafai Bejestan M, Fathi A, Hoseinreza A (2022) Protecting vertical-wall bridge abutment using six-pillar concrete elements. Arab J Geosci 15:1226. https://doi. org/10.1007/ s12517-022-10509-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6cdccc3-87ad-493d-a890-b1407d0e1f00
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.