PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of structural-geometric parameters and elemental composition of spherical VT20 alloy powders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Identification of structural-geometrical parameters, technological properties and elemental composition of spherical powders in a wide fraction range with respect to the VT20 alloy has been carried out. This is important for evaluating the optimum filling of a given volume by mixture of powders of different fractions during 3D printing. Design/methodology/approach: During the investigation of spherical Ti-alloy powders, a comprehensive approach was performed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Dynamic Light Scattering (DLS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The surface morphology of the powders was studied on a Tuescan Vega 3 Scanning Electron Microscope. Using the Quantax energy dispersive spectrometer, element distribution maps were obtained and histograms of element distribution in the investigated powders were constructed. ICP-MS analysis was performed to clarify the elemental composition. DLS analysis using Malvern's Zetasizer Nano-ZS equipment allowed us to determine the functional parameters (hydrodynamic radius – Rh, zeta potential – z and specific conductivity) of particles of titanium alloy powder that indirectly indicate a tendency to form conglomerates. Findings: According to the microscopic examinations, the VT20 alloy powder consists of globular-shaped particles with the lamellar traces on their surfaces. The uniformity of the chemical element distribution within each fraction of the investigated powders was confirmed by EDS, and the full conformity of the powder fractions with the elemental composition of the VT20 alloy was confirmed by ICP-MS. The DLS method allowed to establish that the formation of conglomerates would not occur within the studied fractions of the VT20 alloy powder. Research limitations/implications: The use of high sensitive investigation methods gives understanding of the mechanisms of fine structure formation and possibility to control the processes of powder coagulation in the stage of electrostatic interactions. Practical implications: The obtained results can be used for the formation of fine spherical particles of the powder, but at the same time, these technologies can be extended for the particles of non-spherical shape. Originality/value: The DLS method allowed to establish that the formation of conglomerates would not occur within the studied fractions of the VT20 alloy powder. This, in turn, will improve powder melting during 3D printing. The measured zeta potential values allowed us to reveal mechanisms of fine structure formation and to control the processes of powder coagulation in the stage of electrostatic interactions.
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
Bibliografia
  • [1] S. Moylan, E. Whitenton, B. Lane, J. Slotwinski, Infrared thermography for laser-based powder bed fusion additive manufacturing processes, Proceedings of the 40th Annual Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings 1581/1 (2015) 1191-1196, DOI: https://doi.org/10.1063/1.4864956.
  • [2] M. Chen, X. Li, G. Ji, Y. Wu, Z. Chen, W. Baekelant, K. Vanmeensel, H. Wang, J. Kruth, Novel composite powders with uniform TiB2 nano-particle distribution for 3D printing, Materials for 3D printing 7/3 (2017) 250. DOI: https://doi.org/10.3390/app7030250.
  • [3] B. Vrancken, S. Dadbakhsh, R. Mertens, K. Vanmeensel, J. Vleugels, S. Yang, J.-P. Kruth, Selective laser melting process optimization of Ti-MoTiC metal matrix composites, CIRP Annals 68/1 (2014) 221-224, DOI: https://doi.org/10.1016/j.cirp.2019.04.120.
  • [4] R. Tkachenko, Z. Duriagina, I. Lemishka, I. Izonin, A. Trostianchyn, Development of machine learning method of titanium alloy properties identification in additive technologies, Eastern-European Journal of Enterprise Technologies 3/12 (2018) 23-31, DOI: https://doi.org/10.15587/1729-4061.2018.134319.
  • [5] T.L. Tepla, I.V. Izonin, Z.A. Duriagina, R.O. Tkachenko, A.M. Trostianchyn, I.A. Lemishka, V.V. Kulyk, T.M. Kovbasyuk, Alloys selection based on the supervised learning technique for design of biocompatible medical materials, Archives of Materials Science and Engineering 93/1 (2018) 32-40, DOI: https://doi.org/10.5604/01.3001.0012.6944.
  • [6] Z.A. Duriagina, R.O. Tkachenko, A.M. Trostianchyn, I.A. Lemishka, A.M. Kovalchuk, V.V. Kulyk, T.M. Kovbasyuk, Determination of the best microstructure and titanium alloy powders properties using neural network, Journal of Achievements of Materials and Manufacturing Engineering 87/1 (2018) 25-31, DOI: https://doi.org/10.5604/01.3001.0012.0736.
  • [7] N.A. Pohlman, J.A. Roberts, M.J. Gonser, Characterization of titanium powder: microscopic views and macroscopic flow, Powder Technology 228 (2012) 141-148, DOI: https://doi.org/10.1016/j.powtec.2012.05.009.
  • [8] A. Azouri, K. Xun, K. D. Sattler, Zeta potential studies of titanium dioxide and silver nanoparticle composites in water-based colloidal suspension, Characterization of Nanoparticles 2008 (2008) 221-223, DOI: https://doi.org/10.1115/MN2006-17072.
  • [9] V. Ruseva, H. Jankev, J. Corbett, An optimized filling method for capillary DLS, MethodsX 6 (2019) 606-614, DOI: https://doi.org/10.1016/j.mex.2019.03.006.
  • [10] V.G. Navas, A. Sanda, C. Sanz, D. Fernandez, K. Vanmeensel, Surface integrity of rotary ultrasonic machined ZrO2-TiN and Al2O3-TiC-SiC ceramics, Journal of the European Ceramic Society 35/14 (2015) 3927-3941, DOI: https://doi.org/10.1016/j.jeurceramsoc.2015.06.018.
  • [11] A.V. Minitsky, M.A. Sisoev, N.V. Minitsky, The duration of surface thermal processing and the structure of powdered iron-carbon alloys, Metal Science and Metal Processing 2016 (2016) 3-6 (in Ukrainian).
  • [12] A.M. Tonejc, I. Djerdj, A. Tonejc, Evidence from HRTEM image processing, XRD and EDS on nanocrystalline iron-doped titanium oxide powders, Materials Science and Engineering: B 85/1 (2019) 397-417, DOI: https://doi.org/10.1016/S0921-5107(01)00641-9.
  • [13] V.-D. Hodoroaba, Chapter 4.4 – Energy-dispersive X-ray spectroscopy (EDS), in: V.-D. Hodoroaba, W.E.S. Unger, A.G. Shard (Eds.), Characterization of Nanoparticles. Measurement Processes for Nanoparticles. Micro and Nano Technologies, Elsevier, 2016, 186-273, DOI: https://doi.org/10.1016/B978-012-814182-3.00021-3.
  • [14] B. Bocca, S. Caimi, Oreste Senofonte, A. Alimonti, F. Petrucci, ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues, Science of The Total Environment 630 (2018) 922-930, DOI: https://doi.org/10.1016/j.scitotenv.2018.02.166.
  • [15] ISO ISO 3923-1:2018, Metallic powders. Determination of apparent density. Part 2: Scott volumeter method, 2018, 2-4.
  • [16] ISO 4490:2018, Metallic powders. Determination of flowability by means of a calibrated funnel (Hall flowmeter), 2018, 5-6.
  • [17] Z.A. Duriagina, I.A. Lemishka, A.M. Trostianchyn, V.V. Kulyk, S.G. Shvachko, T.L. Tepla, E.I. Pleshakov, T.M. Kovbasyuk, The effect of morphology and particle-size distribution of VT20 titanium alloy powders on the mechanical properties of deposited coatings, Powder Metallurgy and Metal Ceramics 57 (2019) 697-702, DOI: https://doi.org/10.1007/s11106019-00033-8.
  • [18] C. Huang, Z. Jiang, B. Hu, Mesoporous titanium dioxide as a novel solid-phase extraction material for flow injection micro-column preconcentration on-line coupled with ICP-OES determination of trace metals in environmental samples, Talanta 73/2 (2007) 274-281, DOI: https://doi.org/10.1016/j.talanta.2007.03.046.
  • [19] L. Bolzoni, E.M. Ruiz-Navas, E. Neubauer, E. Gordo, Inductive hotpressing of titanium and titanium alloy powders, Materials Chemistry and Physics 131 (2012) 672-679, DOI: https://doi.org/10.1016/j.matchemphys.2011.10.034.
  • [20] C.R.F. Azevedo, D. Rodrigues, F.B. Neto, Ti-Al-V powder metallurgy (PM) via the hydrogenation– dehydrogenation (HDH) process, Journal of Alloys and Compounds 353 (2003) 217-227, DOI: https://doi.org/10.1016/S0925-8388(02)01297-5.
  • [21] H.M. Sakho, E. Allahyari, O.S. Oluwafemi, S. Thomas, Chapter 2 – Dynamic Light Scattering (DLS), in: S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Eds.), Thermal and Rheologial Measurement Techniques for Nanomaterials Characterization. Micro and Nano Technologies, Elsevier, 2017, 37-49. DOI: https://doi.org/10.1016/B978-0-323-46139-9.00002-5.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6c9220a-cbee-4f88-bda3-ce2ab71e000a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.