PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Double contact analysis of multilayered elastic structures involving functionally graded materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the frictionless double contact problem of a two-layer laminate pressed against a homogeneous half-plane substrate by a rigid punch. The laminate is composed of a homogeneous elastic strip and a functionally graded layer, perfectly bonded along their interface. The mechanical properties of the graded layer are modeled by an exponentially varying shear modulus and constant Poisson’s ratio. Both the governing equations and the boundary conditions of the double contact problem are converted into a pair of singular integral equations by Fourier integral transforms, which are numerically integrated by Chebyshev–Gauss quadrature. The contact pressure and the contact size at both the advancing and the receding contact interface are eventually obtained by an iterative algorithm, developed from the method of steepest descent. Extensive parametric studies suggest that it is possible to control contact stress and contact size by introducing functionally graded materials into multilayered elastic structures.
Rocznik
Strony
199--221
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Jiangsu Key Laboratory of Engineering Mechanics School of Civil Engineering Southeast University Nanjing, Jiangsu 210096, China
autor
  • Jiangsu Key Laboratory of Engineering Mechanics School of Civil Engineering Southeast University Nanjing, Jiangsu 210096, China
Bibliografia
  • 1. F. Erdogan, Fracture mechanics of functionally graded materials, Compos. Eng., 5 (7), 753–770, 1995.
  • 2. S. Suresh, A.E. Giannakopoulos, J. Alcalá, Spherical indentation of compositionally graded materials: Theory and experiments, Acta Mater., 45 (4), 1307–1321, 1997.
  • 3. S. Suresh, Graded materials for resistance to contact deformation and damage, Science, 292, 2447–2451, 2001.
  • 4. M.A. Guler, F. Erdogan, Contact mechanics of two deformable elastic solids with graded coatings, Mech. Mater., 38 (7), 633–647, 2006.
  • 5. M.A. Guler, F. Erdogan, The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings, Int. J. Mech. Sci., 49 (2), 161–182, 2007.
  • 6. R. Elloumi, I. Kallel-Kamoun, S. El-Borgi, A fully coupled partial slip contact problem in a graded half-plane, Mech. Mater., 42 (4), 417–428, 2010.
  • 7. M.A. Guler, M. Ozturk, A. Kucuksucu, The frictional contact problem of a rigid stamp sliding over a graded medium, Key Eng. Mat., 681 (4), 155–174, 2016.
  • 8. A.E. Giannakopoulos, P. Pallot, Two-dimensional contact analysis of elastic graded materials, J. Mech. Phys. Solids, 48 (8), 1597–1631, 2000.
  • 9. S. Chen, C. Yan, P. Zhang, H. Gao, Mechanics of adhesive contact on a power-law graded elastic half-space, J. Mech. Phys. Solids, 57 (9), 1437–1448, 2009.
  • 10. Y.S. Wang, D. Gross, Analysis of a crack in a functionally gradient interface layer under static and dynamic loading, Key Eng. Mat., 183–187, 331–336, 2000.
  • 11. L.L. Ke, Y.S. Wang, Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties, Int. J. Solids Struct., 43 (18), 5779–5798, 2006.
  • 12. T.-L. Liu, Y.S. Wang, C. Zhang, Axisymmetric frictionless contact of functionally graded materials, Arch. Appl. Mech., 78 (4), 267–282, 2008.
  • 13. K.L. Johnson, Contact Mechanics, Cambridge Univ. Press, London, 1985.
  • 14. S. El-Borgi, R. Abdelmoula, L. Keer, A receding contact plane problem between a functionally graded layer and a homogeneous substrate, Int. J. Solids Struct., 43, 658–674, 2006.
  • 15. S. El-Borgi, S. Usman, M.A. Güler, A frictional receding contact plane problem between a functionally graded layer and a homogeneous substrate, Int. J. Solids Struct., 51 (25–26), 4462–4476, 2014.
  • 16. M. Rhimi, S. El-Borgi, S.W. Ben, F.B. Jemaa, A receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate, Int. J. Solids Struct., 46, 3633–3642, 2009.
  • 17. G. Adıyaman, A. Birinci, E. Öner, M. Yaylacı, A receding contact problem between a functionally graded layer and two homogeneous quarter planes, Acta Mechanica, 227 (6), 1753–1766, 2016.
  • 18. M. Rhimi, S. El-Borgi, N. Lajnef, A double receding contact axisymmetric problem between a functionally graded layer and a homogeneous substrate, Mech. Mater., 43 (12), 787–798, 2011.
  • 19. J. Yan, X. Li, Double receding contact plane problem between a functionally graded layer and an elastic layer, Eur. J. Mech. A-Solid., 53, 143–150, 2015.
  • 20. T.-J. Liu, C. Zhang, Y.-S. Wang, Y.-M. Xing, The axisymmetric stress analysis of double contact problem for functionally graded materials layer with arbitrary graded materials properties, Int. J. Solids Struct., 96, 229–239, 2016.
  • 21. H. Adibelli, İ Çömez, R. Erdöl, Receding contact problem for a coated layer and a half-plane loaded by a rigid cylindrical stamp, Arch. Mech., 65 (3), 219–236, 2013.
  • 22. M. Yaylacı, E. Öner, A. Birinci, Comparison between analytical and ANSYS calculations for a receding contact problem, J. Eng. Mech.–ASCE, 140 (9), 04014070, 2014.
  • 23. H.J. Choi, G.H. Paulino, Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation, J. Mech. Phys. Solids, 56 (4), 1673–1692, 2008.
  • 24. T.-J. Liu, Y.-M. Xing, Y.-S. Wang, The axisymmetric contact problem of a coating/substrate system with a graded interfacial layer under a rigid spherical punch, Math. Mech. Solids, 21 (3), 383–399, 2016.
  • 25. R. White, Asymptotic Analysis of Differential Equations, Imperial College Press, Singapore, 2010.
  • 26. F. Erdogan, G.D. Gupta, On the numerical solution of singular integral equations, Q. Appl. Math., 29, 525–534, 1972.
  • 27. X. Li, Boundary Value Problems and Related Problems, World Scientific Publishing, Singapore, 2013.
  • 28. J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics, Philadelphia, 1987.
  • 29. V. Volkan, T.S. Ozsahin, A. Birinci, R. Erdöl, A receding contact problem for an anisotropic elastic medium consisting of a layer and a half plane, Int. J. Solids Struct., 44 (17), 5695–5710, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6c6edcc-adb9-4a1f-9947-82406242274a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.