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Abstract. We discuss a new sufficient condition – weaker than the usual transversality
condition – for the intersection of two subanalytic leaves to be smooth. It involves the tangent
cone of the intersection and, as typically non-transversal, it is of interest in analytic geometry
or dynamical systems. We also prove an identity principle for real analytic manifolds and
subanalytic functions.
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1. INTRODUCTION

The best known sufficient condition for the intersection of two submanifolds of Rn
to be again a submanifold is the transversality condition (Transversal Intersection
Theorem). Namely, if M,N ⊂ Rn are two C1-smooth submanifolds, a ∈M ∩N and
the following condition on the tangent spaces holds (minimality of dimension):

(T ) dim(TaM ∩ TaN) = dimTaM + dimTaN − n,

then the germ (M ∩N)a is C1-smooth.
Condition (T ) is, of course, not a necessary condition. There are many situations

when, for instance, both tangent spaces coincide (and so there is no transversality),
but the intersection of the manifolds is nonetheless a manifold again. The need for
investigating some other sufficient condition (especially the one this paper is dealing
with) came to us from practical considerations — we needed to show smoothness in
some peculiar examples in subanalytic geometry. But it is clearly of interest in analytic
geometry as motivated by physical problems. Moreover, similar questions arise in
dynamical systems where non-transversal intersections of stable and unstable manifolds
were studied by F. Takens (see e.g. [8]) or J. Palis and W. de Melo ([6,7]). Homoclinic
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and heteroclinic bifurcations occur at non-transversal intersections of stable and
unstable manifolds.

Among the most natural conditions to be investigated there would be the following
one introducing the (Peano) tangent cone of the intersection:

(C) Ca(M ∩N) = TaM ∩ TaN.

We recall that for a ∈ E, where E ⊂ Rn,

Ca(E) = {v ∈ Rn | ∃(xν) ⊂ E, xν → a ∃tν > 0: tν(xν − a)→ v}.

In general, condition (C) is not sufficient for (M ∩N)a to be a C1 smooth germ:
Example 1.1. Consider in R2 the following two sets:

M = R× {0} and N = {(x, x4 sin(1/x)) | x 6= 0} ∪ {(0, 0)}

together with the point a = (0, 0). Since TaM = M = TaN , condition (T ) is not
satisfied at a. However, (C) is. Nevertheless, since M ∩N is a numerable set accumu-
lating at a, it is not a submanifold.
Remark 1.2. Clearly, (T ) implies (C), but the converse is not true, as Example 1.1
above shows. Moreover, just as (T ), condition (C) is not a necessary condition for
(M∩N)a to be smooth. To see this consider e.g.M = {y = x2} and N = {y = 0} in R2.

In what follows we prove the sufficiency of condition (C) for the germ (M ∩N)a
to be smooth in several instances: when M,N are subanalytic leaves and either one of
them is one-dimensional (Theorem 2.6), or a hypersurface (Corollary 2.13), which gives
the sufficiency of (C) in Rn for n ≤ 4 (Corollary 2.15), but also in general, provided
the dimensions of M,N do not exceed 2 (Theorem 2.16). Moreover, (C) is sufficient
in the typically non-transversal case when we have inclusion of the tangent spaces
(Theorem 2.7 and Corollary 2.9). Finally, the methods used allow us to prove a kind of
identity principle for analytic submanifolds (Theorem 2.8) and subanalytic functions
(Corollary 2.11).

2. CONDITION (C) FOR SUBANALYTIC LEAVES

Note that what plays an important role in Example 1.1 above is the fact that N
oscillates which is a proscribed behaviour in the subanalytic case. That is why we
will restrict ourselves to the case of subanalytic leaves, i.e. submanifolds that are
subanalytic subsets of Rn (or of an open subset of it; anyway, we are actually dealing
with germs). For subanalytic geometry we refer the reader to [3]). We assume that
submanifolds are connected sets.
Example 2.1 (cf. [3]). In order to better understand the notion of a subanalytic leaf,
observe that the graph of f(x) = sin(1/x) for x > 0 is an analytic submanifold of
the plane, but it is not subanalytic in the whole of R2, hence it is not a subanalytic
leaf in R2.
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Remark 2.2. In general, a subanalytic leaf is required to be a real analytic submanifold.
However, we may as well consider subanalytic sets that are only Ck submanifolds.
We shall discern them by calling them Ck subanalytic leaves.

Example 2.3. Let us observe after [1] that the equation y3 = x5 defines a plane
analytic curve that is only C1-smooth at the origin, hence only a C1 subanalytic leaf,
though at the same time an analytic set.

Recall that the tangent cone of a subanalytic set at a given point is again subanalytic
and its dimension does not exceed that of the set at that point (see [5]; it also follows
directly from the convergence results of [2]). A simple application of the classical Curve
Selecting Lemma shows that any vector from such a tangent cone can be obtained as
the derivative of an analytic curve.

Before we go any further, we will state some obvious remarks concerning
condition (C). First we note that the inclusion

Ca(M ∩N) ⊂ TaM ∩ TaN

always holds, since Ca(M ∩N) ⊂ Ca(M) = TaM .
Secondly, observe that if (C) is satisfied, then

dimCa(M ∩N) = dimM + dimN − dim(TaM + TaN).

Even though in general we have only dimaX ≥ dimCa(X) 1), in our case it turns out
that the dimension of M ∩N at a coincides with that of the tangent cone:

Proposition 2.4. If (C) is satisfied for two C1 subanalytic leaves M,N , then

dima(M ∩N) = dimCa(M ∩N) = dimM + dimN − dim(TaM + TaN).

Proof. It suffices to prove the inequality dima(M ∩ N) ≤ dimCa(M ∩ N). From
the dimension theory for subanalytic sets it follows that there is a subanalytic leaf
Γ ⊂M ∩N such that a ∈ Γ and dim Γ = dimaM ∩N . Take any sequence Γ 3 xν → a.
By extracting a subsequence we may assume that Txν Γ converge to some linear space
L (see e.g. [4]). Then L ⊂ TaM ∩TaN which is Ca(M ∩N) by (C). But dimL = dim Γ
so that dim Γ ≤ dimCa(M ∩N) as required.

Remark 2.5. Unfortunately, the dimension at a point being only upper
semi-continuous we cannot conclude that M ∩ N has constant dimension (which
is a necessary condition for M ∩N to be smooth at a). A possible idea how to prove
that (C) implies smoothness would be (if a proof there should be) to take a Whitney
stratification of a neighbourhood of a compatible with M,N,M ∩N and show that
along the leaves contained in M ∩N the tangent spaces vary continuously, i.e. the
limits coincide at any point belonging to the cluster points of two strata. This should
be considered in the light of some results from [2] and [4].

1) Consider the surface X in R3 described by x3 = x2 + y2; it is a horn, so that its tangent cone at
zero is a semi-line.
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There are two particular cases when it is rather easy to show that (C) implies
smoothness.

Theorem 2.6. Assume that M,N are C1 subanalytic leaves with M of dimension 1.
Then condition (C) implies (M ∩N)a is smooth at a.

Proof. Both sets being subanalytic, we know that M ∩N is subanalytic as well. This
implies that eitherM∩N is isolated at a in which case it is smooth, or dimaM∩N = 1.
If the latter occurs2), then we necessarily have dima Ca(M ∩N) = 1 and since TaM is
one-dimensional, then TaM ∩TaN = TaM , by (C). Now, applying the Curve Selecting
Lemma, we see that we must have the inclusion of germs (M)a ⊂ (N)a (M has two
branches at a which yield the two semi-lines building up TaM , see e.g. [1] where these
observations are extensively used). This ends the proof.

The assumptions of the theorem below should be considered in the light of Exam-
ple 2.3. Recall that analytic germs are subanalytic as well.

Theorem 2.7. Assume that M,N are C1 submanifolds that are also analytic sets in
a neighbourhood of a ∈ M ∩ N . Moreover, suppose that TaM ⊂ TaN and that (C)
holds. Then (M ∩N)a = Ma ⊂ Na.

Proof. By Proposition 2.4 we have that dima(M ∩N) = dimM . Similarly as in the
proof of this Proposition, we find a subanalytic leaf Γ ⊂M ∩N such that a ∈ Γ. Note
that due to the equality of dimensions, Γ has nonempty interior in M .

We may assume that we are working in a neighbourhood of a in which the
representant of the germMa is connected. We can ask that in this same neighbourhood
the analytic set M ∩N be the zero set of an analytic function f . Since f |M vanishes
on Γ, by the identity principle and the connectedness of M we conclude that f |M ≡ 0.
Therefore, M ⊂M ∩N which ends the proof.

The proof suggests an identity principle for real analytic submanifolds similar to
the one that holds in the complex case for analytic sets:

Theorem 2.8. LetM,N be two connected analytic submanifolds that are closed subsets
of an open set Ω ⊂ Rn nad let a ∈M ∩N . Assume that there is a neighbourhood U of
a such that U ∩M = U ∩N . Then M = N .

Proof. Let M ′ := {x ∈ M | ∃V – a neighbourhood of x : V ∩M = V ∩ N}. Then
a ∈M ′ and M ′ is open in M .

Take a sequenceM ′ 3 xν → x0 ∈M . By the definition ofM ′, xν ∈M∩N and since
M,N are closed in Ω. we conclude that x0 ∈M ∩N . Then, we find a neighbourhood
W of x0 such that:

(a) W ∩M and W ∩N are connected;
(b) W ∩M = f−1(0) and W ∩N = g−1(0) for two submersions f : W → Rn−p and

g : W → Rn−q.

2) This means that M ∩ N at a consists of finitely many “half-branches”.
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Then for ν large enough, we have xν ∈W and so we are able to find a neighbourhood
xν ∈ V ⊂W such that V ∩M = V ∩N . This implies that f |V ∩N ≡ 0 and since V ∩N
is an open, nonempty subset of N , we conclude by the classical identity principle,
that f |N ≡ 0. Thence, N ⊂ M . Repeating this argument with g instead of f yields
M ⊂ N .

As a direct corollary to Theorem 2.7 we obtain another instance when (C) is
a sufficient condition for smoothness in a typically non-transversal situation.
Corollary 2.9. Let M,N be two C1 submanifolds that are also analytic sets of the
same dimension d, a ∈ M ∩ N and assume that TaM = TaN . Then (C) implies
(M ∩N)a = Ma = Na.
Remark 2.10. One of the reasons why this kind of results are of interest is that in
analytic geometry we often deal with a set Z described as the zeroes f−1(0) of some
analytic function f : (Rn, a)→ (R, 0) with daf = 0. This degenerated differential does
not exclude the possibility of Z being smooth at a. Note that Z corresponds to the
intersection of the graph M of f with the domain N = Rn × {0} and the condition on
the differential means that TaM = TaN .

In view of this remark it is easy to obtain now a kind of identity principle for
subanalytic functions3):
Corollary 2.11. Let f : (Rn, 0)→ (R, 0) be a C1 subanalytic germ with analytic graph
and such that C0(f−1(0)) = Rn. Then f = 0.
Proof. The zero-set f−1(0) corresponds to the intersection of the graph Γf (an
n-dimensional C1 submanifold and an analytic set) with the domain Rn × {0}.
We necessarily have d0f = 0 (otherwise (f−1(0))0 would be a smooth hyper-
surface, contradicting the assumption on the tangent cone) which means that
T0Γf ∩T0(Rn×{0}) = Rn×{0} = C0(Γf ∩ (Rn×{0})), i.e. (C) is satisfied. Therefore,
the previous Corollary implies that (Γf ∩ (Rn × {0}))0 = (Rn × {0})0 = (Γf )0 which
ends the proof.

In particular, Corollary 2.9 also implies the following result.
Corollary 2.12. In R3 condition (C) is sufficient for (M∩N)a to be smooth, regardless
of the dimensions of the C1 subanalytic leaves M,N , both analytic at a.
Proof. Clearly, there is nothing to do, if one of the leaves is open in R3, or a point.
If one of them has dimension 1, we use Theorem 2.6. The remaining case is when TaM ,
TaN are two planes. If they intersect transversally, we use the Transversal Intersection
Theorem. If they do not, then we are in the situation of the previous corollary.

If one of the leaves is a hypersurface, we obtain the following corollary.
Corollary 2.13. If the C1 subanalytic and analytic leaf N has codimension 1, then
condition (C) is sufficient for (M ∩N)a to be smooth, for any C1 subanalytic leaf M
in Rn, analytic at a.

3) The function f(x) = x5/3 appearing in Example 2.3 is typically a non-analytic, C1-smooth function
with analytic graph.
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Proof. There are only two possibilities for dimTaM ∩ TaN : either this dimension is
equal to dimM − 1, or to dimM . In the first case, we are dealing, actually, with
condition (T ) (cf. dimN = n − 1) and the result follows. In the second case, we
necessarily have TaM ⊂ TaN and we can invoke Theorem 2.7 in order to finish the
proof.

From these results we are also able to infer the sufficiency of (C) for subanalytic
leaves in R4:
Proposition 2.14. In R4 condition (C) is sufficient for (M ∩ N)a to be smooth,
regardless of the dimensions of the subanalytic leaves M,N .
Proof. We may discard the cases when one of the leaves is open or a point. From
the previous results, we need not bother about the cases when one of the leaves is
one-dimensional or three-dimensional. Thence, it remains to consider the case of two
surfaces M,N , i.e. dimM = dimN = 2. But then Ca(M ∩N) = TaM ∩ TaN can be
of dimension
1. 0 – this means that (M ∩N)a is reduced to the point {a} which is smooth (this is

the transversal case when (T ) is fulfilled);
2. 1 – in this case dima(M ∩N) = 1 and it requires further discussion below;
3. 2 – this happens iff TaM = TaN , but then we have Corollary 2.9 to conclude.
Let us look at case (2). Using an analytic diffeomorphism in a neighbourhood of a,
we may assume that a = 0, M = T0M = R2 × {0}2 and N is the graph of an
analytic function germ f : (R2, 0) → (R2, 0) with the differential d0f of rank 1, say
Kerd0f = R × {0}. Then M ∩ N corresponds to the zero-set X := f−1(0) and we
necessarily have C0(X) ⊂ Kerd0f .

Now, analytic diffeomorphisms do not alter condition (C), hence there must be
C0(X) = Kerd0f . Of course, dim0 X = 1, thus we are dealing with a one-dimensional
analytic set X in a neighbourhood of 0 ∈ R2 and whose tangent cone is R× {0}. It
is a classical fact 4) that X \ {0} consists of an even number of branches, i.e. images
γi((0, ε)) of some injective analytic curves γi : (−ε, ε)→ R2 with γi(0) = 0. Note the
derivatives γ′i(0) give the two semi-lines making up the tangent cone.

Write f = (f1, f2) and let (x, y) be the variables in R2. The assumptions made so
far yield in particular:

∂fi
∂x

(0) = 0 for i = 1, 2, and
(
∂f1
∂y

(0)
)2

+
(
∂f2
∂y

(0)
)2
6= 0.

To fix the attention, let us say that ∂f1
∂y (0) 6= 0. Then by the (Analytic) Implicit Function

Theorem, 0 is a regular point of f−1
1 (0), i.e. this set is an analytic submanifold in

a neighbourhood of zero, of dimension 1. Actually, it is an analytic graph x 7→ y(x).
But then the set X ⊂ f−1

1 (0), one-dimensional and analytic itself and sharing the
same two tangent semi-lines (for x > 0 and x < 0), must coincide with f−1

1 (0) in
a neighbourhood of zero. Therefore, X is smooth at the origin.

4) It can be proved e.g. using the Weierstrass Preparation Theorem and the the Curve Selecting
Lemma does the rest.
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Summing up the preceding results we get the following corollary.

Corollary 2.15. In Rn, for n ≤ 4, condition (C) is sufficient for (M ∩ N)a to be
smooth for any two subanalytic leaves M,N .

The last proof can be repeated in order to obtain the following theorem.

Theorem 2.16. Assume that M,N are subanalytic leaves in Rn satisfying
max{dimM, dimN} ≤ 2. Then condition (C) is sufficient for (M ∩N)a to be smooth.

Proof. In view of the preceding results we may assume that n > 4. If one of the leaves
has dimension 0 or 1, there is nothing to do. Therefore, we turn to the situation
when we are dealing with two surfaces M,N , i.e. both dimensions are 2. As earlier,
dim(TaM ∩ TaN) ∈ {0, 1, 2}. This time, however, the zero-dimensional case may not
involve (T ) (if n 6= 4). But it follows from the Curve Selecting Lemma that any
vector from the tangent cone Ca(M ∩ N) can be obtained as the derivative of an
injective analytic curve through a and whose half-branch lives in M ∩N . Therefore,
the dimension of the tangent cone is equal to zero iff M ∩N is isolated at a and then
it is smooth.

Next, dim(TaM ∩ TaN) = 2 iff TaM = TaN and we use Corollary 2.9. Finally, if
dim(TaM ∩TaN) = 1, we may repeat the argument from the proof of Proposition 2.14:
in a neighbourhood of a that we may assume to be the origin, we flatten M to
represent it as R2 × {0}n−2 and consider N as the graph of an analytic function germ
(R2, 0)→ (Rn−2, 0) with differential of rank 1. The rest of the proof can be repeated
unaltered.

Example 2.17. Such results as that of Proposition 2.14 may be used, for example,
the negative way: the analytic set {(x, y) ∈ R2 | |y| = x2} in R2 × {0}2 cannot be
obtained (as a germ at the origin) from the intersection of two analytic, C1-smooth
surfaces in R4 with their tangent planes intersecting along R× {0}3.

On the other hand, a naïve example of a direct application of Proposition 2.14
could be the following: consider in R4 with the coordinates (x, y, z, t) the two sets
M,N defined respectively by

M : (x2 + y2 + xy + (1/2)x− y)2 + (t− x2 − y2)2 = 0

and
N : (x2 − y2 − z2 + z)2 + (t− x2 − y2)2 = 0.

It is clear at once that both sets are two-dimensional submanifolds with

T0M ∩ T0N = {(x, y, z, t) ∈ R4 | 2y = x, z = t = 0}.

This contains the tangent cone C0(M ∩N). It suffices now to show that the vectors
±(1, 1/2, 0, 0) belong to this cone. It is easy to see what sequences M ∩N 3 aν → 0,
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λν > 0 will give this, e.g. (1, 1/2, 0, 0) can be obtained as the limit limν λνaν for
λν = ν and aν = (xν , yν , zν , tν) where

xν = 1/ν, yν =
[
(1− (1/ν))−

√
1− 3(1/ν)2 − 4(1/ν)

]
/2,

zν =
[
1−

√
(6(1/ν2) + 6(1/ν) + 2(1− 1/ν)

√
1− 3(1/ν2)− 4(1/ν)

]
/2,

tν = x2
ν + y2

ν .

Therefore, (M ∩ N)0 is smooth. All this is a mere computation. Of course, in this
precise case it is possible to argue differently by reducing the problem to R3 where
we actually are dealing with a transversal intersection. But this example has the
advantage of being simple enough to be a – hopefully – good illustration of how (C) is
supposed to work.
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