PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effective and water-equivalent diameters as geometrical size functions for estimating CT dose in the thoracic, abdominal, and pelvic regions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of this work was to establish the relationships of patient size in terms of effective diameter (Deff) and water-equivalent diameter (Dw) with lateral (LAT) and anterior-posterior (AP) dimensions in order to predict the specific patient dose for thoracic, abdominal, and pelvic computed tomography (CT) examinations. Methods: A total of 47 thoracic images, 79 abdominal images, and 50 pelvic images were analyzed in this study. The patient’s images were retrospectively collected from Dr. Kariadi and Kensaras Hospitals, Semarang, Indonesia. The slices measured were taken from the middle of the scan range. The calculations of patient sizes (LAT, AP, Deff, and Dwf) were automatically performed by IndoseCT 20b software. Deff and Dw were plotted as functions of LAT, AP, and AP+LAT. In addition, Dw was plotted as a function of Deff. Results: Strong correlations of Deff and Dw with LAT, AP, and AP+LAT were found. Stronger correlations were found in the Deff curves (R2 > 0.9) than in the Dw curves (R2 > 0.8). It was found that the average Deff was higher than the average Dw in the thoracic region, the average values were similar in the abdominal and pelvic regions. Conclusion: The current study extended the study of the relationships between Deff and Dw and the basic geometric diameter LAT, AP, and AP+LAT beyond those previously reported by AAPM. We evaluated the relationships for three regions, i.e. thoracic, abdominal, and pelvic regions. Based on our findings, it was possible to estimate Deff and Dw from only the LAT or AP dimension.
Rocznik
Strony
213--222
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
autor
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Department of Physics, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java, Indonesia
  • Department of Applied Physics and Medical Imaging, California State University Channel Islands, Camarillo, CA 93012, USA
Bibliografia
  • 1. Ginat DT, Gupta R. Advances in computed tomography imaging technology. Annu Rev Biomed Eng. 2014;16:431-53. https://doi.org/10.1146/annurev-bioeng-121813-113601
  • 2. Tabari A, Lo Gullo R, Murugan V, Otrakji A, Digumarthy S, Kalra M. Recent advances in computed tomographic technology. J Thorac Imaging. 2017;32(2):89-100. https://doi.org/10.1097/RTI.0000000000000258
  • 3. Romans LE. Computed tomography for technologists: A comprehensive text, second edition. Computed Tomography for Technologists: A Comprehensive Text. 2011.
  • 4. Anam C, Haryanto F, Widita R, Arif I, Dougherty G, McLean D. Volume computed tomography dose index (CTDIvol) and sizespecific dose estimate (SSDE) for tube current modulation (TCM) in CT scanning. Int J Radiat Res. 2018;16(3):289-97.
  • 5. Khan A, Khosa F, Nasir K, Yassin A, Clouse ME. Comparison of radiation dose and image quality: 320-MDCT versus 64-MDCT coronary angiography. Am J Roentgenol. 2011;197(1):163-8. https://doi.org/10.2214/AJR.10.5250
  • 6. NHS England. Diagnostic imaging dataset annual statistical. NHS Engl Internet.. 2020;1–29. Available from: https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2020/10/Annual-Statistical-Release-2019-20-PDF-1.4MB.pdf
  • 7. Juliusson G, Thorvaldsdottir B, Kristjansson JM, Hannesson P. Diagnostic imaging trends in the emergency department: an extensive single-center experience. Acta Radiol Open. 2019;8(7):205846011986040. https://doi.org/10.1177/2058460119860404
  • 8. Pola A, Corbella D, Righini A, et al. Computed tomography use in a large italian region: Trend analysis 2004-2014 of emergency and outpatient ct examinations in children and adults. Eur Radiol. 2018;28(6):2308-18. https://doi.org/10.1007/s00330-017-5225-x
  • 9. Smith-Bindman R, Wang Y, Chu P, et al. International variation in radiation dose for computed tomography examinations: Prospective cohort study. BMJ. 2019;364:k4931. https://doi.org/10.1136/bmj.k4931
  • 10. Bauhs JA, Vrieze TJ, Primak AN, Bruesewitz MR, McCollough CH. CT dosimetry: comparison of measurement techniques and devices. Radiographics. 2008;28(1):245-53. https://doi.org/10.1148/rg.281075024
  • 11. Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: What good are they? Radiology. 2011;258(1):236-42. https://doi.org/10.1148/radiol.10100297
  • 12. Anam C, Budi WS, Adi K, et al. Assessment of patient dose and noise level of clinical CT images: automated measurements. J Radiol Prot. 2019;39(3):783-93. https://doi.org/10.1088/1361-6498/ab23cc
  • 13. McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose : They are not the same thing. Radiology. 2011;259(2):311-6. https://doi.org/10.1148/radiol.11101800
  • 14. The Report of AAPM Task Group 204. Size-specific dose estimates (SSDE) in paediatric and adult body CT examinations. 2011. https://www.aapm.org/pubs/reports/RPT_204.pdf.
  • 15. The Report of AAPM Task Group 220. Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT. 2014. https://www.aapm.org/pubs/reports/RPT_220.pdf.
  • 16. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. Automated calculation of water-equivalent diameter (DW) based on AAPM task group 220. J Appl Clin Med Phys. 2016;17(4):320-33. https://doi.org/10.1120/jacmp.v17i4.6171
  • 17. Anam C, Haryanto F, Widita R, Arif I, Dougherty G. The evaluation of the effective diameter (Deff) calculation and its impact on the size-specific dose estimate (SSDE). Atom Indonesia. 2017;43(1):55-60. https://doi.org/10.17146/aij.2017.617
  • 18. Gabusi M, Riccardi L, Aliberti C, Vio S, Paiusco M. Radiation dose in chest CT: Assessment of size-specific dose estimates based on water-equivalent correction. Phys Med. 2016;32(2):393-7. https://doi.org/10.1016/j.ejmp.2015.12.008
  • 19. Burton CS, Szczykutowicz TP. Evaluation of AAPM reports 204 and 220: Estimation of effective diameter, water-equivalent diameter, and ellipticity ratios for chest, abdomen, pelvis, and head CT scans. J Appl Clin Med Phys. 2018;19(1):228-38. https://doi.org/10.1002/acm2.12223
  • 20. Anam C, Haryanto F, Widita R, Arif I. Automated estimation of patient’s size from 3D image of patient for size specific dose estimates (SSDE). Adv Sci Eng Med. 2015;7(10):892-6. https://doi.org/10.1166/asem.2015.1780
  • 21. Brady SL, Kaufman RA. Investigation of American Association of Physicists in medicine report 204 size-specific dose estimates for pediatric CT implementation. Radiology. 2012;265(3):832-40. https://doi.org/10.1148/radiol.12120131
  • 22. Pourjabbar S, Singh S, Padole A, Saini A, Blake MA, Kalra M. Size-specific dose estimates: localizer or transverse abdominal computed tomography images? World J Radiol. 2014;6(5):210-7. https://doi.org/10.4329/wjr.v6.i5.210
  • 23. Tsalafoutas IA, Kharita MH, Al-Naemi H, Kalra MK. Radiation dose monitoring in computed tomography: Status, options and limitations. Phys Med. 2020;79:1-15. https://doi.org/10.1016/j.ejmp.2020.08.020
  • 24. Juszczyk J, Badura P, Czajkowska J, et al. Automated size-specific dose estimates using deep learning image processing. Med Image Anal. 2021;68:101898. https://doi.org/10.1016/j.media.2020.101898
  • 25. Anam C, Fujibuchi T, Toyoda T, et al. A simple method for calibrating pixel values of the CT localizer radiograph for calculating water-equivalent diameter and size-specific dose estimate. Radiat Prot Dosim. 2018;179:158-68. https://doi.org/10.1093/rpd/ncx241
  • 26. Mihailidis D, Tsapaki V, Tomara P. A simple manual method to estimate water-equivalent diameter for calculating size-specific dose estimate in chest computed tomography. Br J Radiol. 2020;93:20200473. https://doi.org/10.1259/bjr.20200473
  • 27. Kleinman PL, Strauss KJ, Zurakowski D, Buckley KS, Taylor GA. Patient size measured on CT images as a function of age at a tertiary care children’s hospital. Am J Roentgenol. 2010;194(6):1611-9. https://doi.org/10.2214/AJR.09.3771
  • 28. Boone JM, Cooper VN, Nemzek WR, McGahan JP, Seibert JA. Monte Carlo assessment of computed tomography dose to tissue adjacent to the scanned volume. Med Phys. 2000;27(10):2393-407. https://doi.org/10.1118/1.1312809
  • 29. ICRU. Patient dosimetry for X rays used in medical imaging. J ICRU. 2005;5(2):iv-vi. https://doi.org/10.1093/jicru_ndi018
  • 30. Kim S , Lee GH, Lee S, Park SH, Pyo HB, Cho JS. Body fat measurement in computed tomography image. Biomed Sci Instrum. 1999;35:303-8.
  • 31. Anam C, Arif I, Haryanto F, et al. A simplified method for the water-equivalent diameter calculation to estimate patient dose in CT examinations. Radiat Prot Dosim. 2019;185(1):42-9. https://doi.org/10.1093/rpd/ncy214
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6c6457f-b5b5-4e0c-8798-e06ba392f621
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.