PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A software tool for automatic geometry generation of a micro turbine

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat recovery plays an important role in increasing the efficiency of renewable energy facilities like biomass furnaces, solar power plants or biofuel combustion engines. As the overall efficiency of the facilities can be increased by recovering the energy. The available waste heat can be converted directly into mechanical energy, pressure or subsequently converted into electrical energy by coupling the expansions machine with a generator. The waste heat can be converted by Organic Rankine Cycle (ORC). Therefore, an expansion machine, e.g. a turbine is required. Also small amounts of waste heat can be recovered, if so-called micro turbines are used. Design and construction of such micro turbines always follow fixed rules. Aim of this work is to explain the rules how to design a micro turbine. Furthermore, our workflow and a software tool which follows these rules should be presented.
Rocznik
Strony
465--478
Opis fizyczny
Bibliogr. 21 poz., il. (w tym kolor.), fot., wykr.
Twórcy
  • University of Applied Sciences Saarbrücken, Saarbrücken, Germany
  • University of Applied Sciences Saarbrücken, Saarbrücken, Germany
autor
  • University of Applied Sciences Saarbrücken, Saarbrücken, Germany
  • University of Applied Sciences Saarbrücken, Saarbrücken, Germany
  • University of Applied Sciences Saarbrücken, Saarbrücken, Germany
autor
  • University of Applied Sciences Saarbrücken, Saarbrücken, Germany
Bibliografia
  • [1] Paulus, M.: Wärmerückgewinnungspotenziale durch die Nutzung von Abgas an Walzwerk-öfen, Bachelorarbeit, htw saar, 2015.
  • [2] Freymann, R., Strobl, W.: Der Turbosteamer: Ein System zur Kraft-Wärme-Kopplung im Automobil, MTZ, 69, 2008.
  • [3] Quoilin, S.: Experimental Study and Modeling of a Low Temperature Rankine Cycle for Small Scale Cogeneration, PhD Thesis, University of Liege, 2007.
  • [4] Ibaraki, S., Endo, T., Kojima, Y., Takahashi, K., Baba, T., Kawajiri, S.: Study of Efficient On-board Waste Heat Recovery System Using Rankine Cycle, Re- view of Automotive Engineering, 28, 307-313, 2007.
  • [5] Bredel, E., Nickl, J.: Abwärmenutzung im Antrieb von Heute und Morgen, MTZ, 04, 72, 2001.
  • [6] Ringler, J., Seifert, M., Guyotot, V., Hübner, W.: Rankine Cycle for Waste Heat Recovery of IC Engines; SAE International; 2009-01-0174, 2009.
  • [7] Perić, M., Ferziger, J. H.: Computational Methods for Fluid Dynamics, Springer, 2002.
  • [8] Engineering Simulations and 3-D Design Software, Available online: www.ANSYS.com.
  • [9] https://www.3ds.com/de/produkte-und-services/catia.
  • [10] https://www.plm.automation.siemens.com/de/products/lms/imagine-lab.
  • [11] Noll, B.: Numerische Strömungsmechanik, Berlin 1993.
  • [12] Menter, F., Esch, T., Kubacki, S.: Transition modelling based on local Variables, In Proceedings of the Fifth International Symposium on Engineering Turbulence Modelling and Measurements, Mallorca, Spain, 16-18 September 2002, Engineering Turbulence Modelling and Experiments 5. Rodi, W., Fueye, N., Eds., Elsevier: Amsterdam, Netherlands, 555-564, 2002.
  • [13] Resch, M., Currle-Linde, N., Küster, U., Risio, B.: A Grid Framework for Computational Mechanics Applications, Mastorakis, N. (Eds.), Proceedings of the 2nd WSEAS International Conference on Applied and Theoretical Mechanics (MECHANICS’ 06), 360-369, Venice, Italy, 2006.
  • [14] Rückert, F. U., Ströhle, J., Sabel, T., Schnell, U., Hein, K. R. G.: Advantages of Combining Different Grid Types for 3D Furnace Modelling, Sixth Interna- tional Conference on Technologies and Combustion for a Clean Environment, Porto, Portugal, 2001.
  • [15] Benim, A. C., Chattopadhyay, H., Nahavandi, A.: Computational Analysis of turbulent forced Cconvection in a Channel with a triangular Prism, Int. J. Therm. Sci., 50, 1973-1983, 2011.
  • [16] Wursthorn, S.: Numerische Untersuchung kavitierender Strömungen in einer Modellkreiselpumpe, Universität Karlsruhe, Dissertation, Karlsruhe, 2001.
  • [17] Benim, A. C., Nahavandi, A., Syed, K.: URANS and LES analysis of turbulent swirling flows, Progress in Computational Fluid Dynamics An Int. J., 5, 444-454., 2005.
  • [18] Barth, T. J., Jespersen, D.: The Design and Application of upwind Schemes on unstructured Meshes, In Proceedings of the AIAA 27th Aerospace Sciences Meeting, Reno, NV, USA, Technical Report, AIAA-89-0366, 1989.
  • [19] Durbin, P. A., Pettersson Reif, B. A.: Statistical Theory and Modeling for Turbulent Flows, 2nd ed., Wiley: Chichester, UK, 2011.
  • [20] Roloff/Matek: Maschinenelemente, 21. Auflage, Springer Vieweg, 2013.
  • [21] Roloff/Matek: Maschinenelemente - Tabellenbuch, 21. Auflage, Springer Vieweg, 2013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6c3a70c-3527-4347-84f5-672ee505cdab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.