PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Depth estimation problems in microgravity survey

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Qualitative interpretation is one of the most important missions in geophysical methods, particularly the determination of the shape and depth of disturbing bodies. The characteristics of the gravity feld make it difcult to unequivocally determine both of these parameters; therefore, the problem is solved by reducing the shape of the body by means of simple solid fgures and on this basis an attempt to estimate their depth. This paper presents an analysis of depth estimation in microgravity surveys. The useful signal-to-error ratio in this survey causes an additional factor infuencing the quality of the estimated depths. Werner deconvolution and Extended Euler deconvolution, as the most frequently applied methods, were used to resolving the problem. Based on the Werner method, a processing methodology was developed that minimizes the impact of the error on the calculation results. An algorithm was also created that allows obtaining a depth solution in this method. The results of the Werner method were compared with the results of the Extended Euler method. Tests have shown that despite the relatively high error to amplitude ratio of the anomaly, satisfactory results can be obtained with the appropriate methodology.
Czasopismo
Rocznik
Strony
665--672
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • AGH-University Science and Technology, A. Mickiewicz Av. 30, 30-059 Krakow, Poland
autor
  • AGH-University Science and Technology, A. Mickiewicz Av. 30, 30-059 Krakow, Poland
Bibliografia
  • 1. Bhattacharyya BK, Chan KC (1977) Reduction of gravity and magnetic data on an arbitrary surface acquired in a region of high topographic relief. Geophysics 43:1411–1430
  • 2. Cooper GRJ (2011) The semi-automatic interpretation of gravity profile data. Comp and Geos 37(8):1102–1109
  • 3. Dimri VP (1992) Deconvolution and inverse theory, application to geophysical problems. Elsevier, Amsterdam
  • 4. Hinze WJ, von Frese RRB, Saad AH (2012) Gravity and magnetic exploration. Principles, practices and applications. Cambridge University Press, Cambridge
  • 5. Ku CC, Sharp JA (1983) Werner deconvolution for automated magnetic interpretation and its refinement using Marquart’s inverse modelling. Geophysics 48(6):754–774
  • 6. Mushayandebvu MF, van Driel P, Reid AB, Fairhead JD (2001) Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics 66(3):814–823
  • 7. Nettleton LL (1940) Geophysical Prospecting for Oil. McGraw-Hill, London
  • 8. Porzucek S (2010) Some applicability problems of Euler deconvolution to the interpretation of the results of microgravity survey. Near Surface. https://doi.org/10.3997/2214-4609.20144897
  • 9. Ram Babu HV, Venkata Raju DCh, Atchuta Rao D (1987) The straight slope rule in gravity interpretation. J Assoc Explor Geophys 8:247–251
  • 10. Smith RA (1959) Some depth formulae for local magnetic and gravity anomalies. Geophys Prosp 7:55–63
  • 11. Smith RA, Bott MHP (1958) The estimation of limiting depth of gravitating bodies. Geophys Prosp 6:1–10
  • 12. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302
  • 13. Thompson DT (1982) EULDPH, a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47:31–37
  • 14. Werner S (1953) Interpretation of Magnetic Anomalies at Sheet like Bodies. Sveriges Geologiska Undersökning, Serie C, Nr, p 508
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6bcd2d7-8c75-4d78-822d-862b81dd6286
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.