PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transverse vibration analysis of nonlocal beams with various slenderness ratios, undergoing thermal stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, thermally-excited, lateral free vibration analysis of a small-sized Euler-Bernoulli beam is studied based on the nonlocal theory. Nonlocal effect is exerted into analysis utilizing differential constitutive model of Eringen. This model is suitable for design of sensors and actuators in dimensions of micron and submicron. Sudden temperature rise conducted through the thickness direction of the beam causes thermal stresses and makes thermo-mechanical properties to vary. This temperature field is supposed to be constant in the lateral direction. Temperatures of the top and bottom surfaces of the system are considered to be equal to each other. Governing equation of motion is derived using Hamilton’s principle. Numerical analysis of the system is performed by Galerkin’s approach. For verification of the present results, comparison between the obtained results and those of benchmark is reported. Numerical results demonstrate that dynamic behavior of small-sized system is been effected by temperature shift, nonlocal parameter, and slenderness ratio. As a result, taking the mentioned parameters into account leads to better and more reliable design in miniaturized-based industries.
Rocznik
Strony
5--24
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering,University of North Dakota, Grand Forks, North Dakota, USA
  • Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky, USA
  • Faculty of Mechanical Engineering, Urmia University of Technology, Urmia, Iran
autor
  • Faculty of Mechanical Engineering, University of Zanjan, Zanjan, Iran
Bibliografia
  • [1] R.A. Toupin. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11(1):385–414, 1962. doi: 10.1007/BF00253945.
  • [2] R. Mindlin and H. Tiersten. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11(1):415–448, 1962. doi: 10.1007/BF00253946.
  • [3] A. Ghanbari and A. Babaei. The new boundary condition effect on the free vibration analysis of micro-beams based on the modified couple stress theory. International Research Journal of Applied and Basic Sciences, 9(3):274–9, 2015.
  • [4] N. Fleck and J. Hutchinson. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, 41(12):1825–1857,1993. doi: 10.1016/0022-5096(93)90072-N.
  • [5] R. Mindlin. Influence of couple-stresses on stress concentrations. Experimental Mechanics, 3(1):1–7, 1963. doi: 10.1007/BF02327219.
  • [6] A.C. Eringen. Theory of micropolar plates. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 18(1):12–30, 1967. doi: 10.1007/BF01593891.
  • [7] A.C. Eringen. Nonlocal polar elastic continua. International Journal of Engineering Science, 10(1):1–16, 1972. doi: 10.1016/0020-7225(72)90070-5.
  • [8] E.C. Aifantis. Strain gradient interpretation of size effects. International Journal of Fracture, 95(1):299–314, 1999. doi: 10.1023/A:1018625006804.
  • [9] F. Yang, A.C.M. Chong, D.C.C. Lam, and P. Tong. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10):2731–2743, 2002. doi: 10.1016/S0020-7683(02)00152-X.
  • [10] M. Gurtin, J. Weissmüller, and F. Larché. A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A, 78(5):1093–1109, 1998. doi: 10.1080/01418619808239977.
  • [11] C.M.C Roque, D.S. Fidalgo, A.J.M. Ferreira, and J.N. Reddy. A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method. Composite Structures, 96:532–537, 2013. doi: 10.1016/j.compstruct.2012.09.011.
  • [12] A. Ghanbari, A. Babaei, and F. Vakili-Tahami. Free vibration analysis of micro beams based on the modified couple stress theory, using approximate methods. International Journal of Engineering and Technology Sciences, 3(2):136–143, 2015.
  • [13] A.R. Askari and M. Tahani. Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. Applied Mathematical Modelling, 39(2):934–946, 2015. doi: 10.1016/j.apm.2014.07.019.
  • [14] W.-Y. Jung, W.-T. Park, and S.-C. Han. Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory. International Journal of Mechanical Sciences, 87:150–162, 2014. doi: 10.1016/j.ijmecsci.2014.05.025.
  • [15] A. Babaei, A. Ghanbari, and F. Vakili-Tahami. Size-dependent behavior of functionally graded micro-beams, based on the modified couple stress theory. International Journal of Engineering and Technology Sciences, 3(5):364–372, 2015.
  • [16] N. Shafiei, A. Mousavi, and M. Ghadiri. Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM. Composite Structures, 149:157–169, 2016. doi: 10.1016/j.compstruct.2016.04.024.
  • [17] R. Aghazadeh, E. Cigeroglu, and S. Dag. Static and free vibration analyses of small-scale functionally graded beams possessing a variable length scale parameter using different beam theories. European Journal of Mechanics – A/Solids, 46:1–11, 2014. doi: 10.1016/j.euromechsol.2014.01.002.
  • [18] M. Fathalilou, M. Sadeghi, and G. Rezazadeh. Micro-inertia effects on the dynamic characteristics of micro-beams considering the couple stress theory. Mechanics Research Communications, 60:74–80, 2014. doi: 10.1016/j.mechrescom.2014.06.003.
  • [19] R. Ansari, R. Gholami, M.F. Shojaei, V. Mohammadi, and S. Sahmani. Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory. European Journal of Mechanics – A/Solids, 49:251–267, 2015. doi: 10.1016/j.euromechsol.2014.07.014.
  • [20] M.A. Eltaher, S.A. Emam, and F.F. Mahmoud. Free vibration analysis of functionally graded size-dependent nanobeams. Applied Mathematics and Computation, 218(14):7406–7420, 2012. doi: 10.1016/j.amc.2011.12.090.
  • [21] F. Ebrahimi and E. Salari. Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Composite Structures, 128:363–380, 2015. doi: 10.1016/j.compstruct.2015.03.023.
  • [22] F. Ebrahimi and E. Salari. Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astronautica, 113:29–50, 2015. doi: 10.1016/j.actaastro.2015.03.031.
  • [23] A. Babaei and I. Ahmadi. Dynamic vibration characteristics of non-homogenous beam-model MEMS. Journal of Multidisciplinary Engineering Science Technology, 4(3):6807–6814, 2017.
  • [24] A. Babaei and C.X.Yang.Vibration analysis of rotating rods based on the nonlocal elasticity theory and coupled displacement field. Microsystem Technologies, 1–9, 2018. doi: 10.1007/s00542-018-4047-3.
  • [25] A. Babaei and A. Rahmani. On dynamic-vibration analysis of temperature-dependent Timoshenko micro-beam possessing mutable nonclassical length scale parameter. Mechanics of Advanced Materials and Structures, 2018. doi: 10.1080/15376494.2018.1516252.
  • [26] S. Azizi, B. Safaei, A.M. Fattahi, and M. Tekere. Nonlinear vibrational analysis of nanobeams embedded in an elastic medium including surface stress effects. Advances in Materials Science and Engineering, ID 318539, 2015. doi: 10.1155/2015/318539.
  • [27] B. Safaei and A.M. Fattahi. Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models. Mechanics, 23(5):678–687, 2017. doi: 10.5755/j01.mech.23.5.14883.
  • [28] A.M. Fattahi and B. Safaei. Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions. Microsystem Technologies, 23:5079–5091, 2017. doi: 10.1007/s00542-017-3345-5.
  • [29] A. Chakraborty, S. Gopalakrishnan, and J.N. Reddy. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45(3):519–539, 2003. doi: 10.1016/S0020-7403(03)00058-4.
  • [30] H.J. Xiang and J. Yang. Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Composites Part B: Engineering, 39(2):292–303, 2008. doi: 10.1016/j.compositesb.2007.01.005.
  • [31] S. Pradhan and T. Murmu. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method. Journal of Sound and Vibration, 321(1):342–362, 2009. doi: 10.1016/j.jsv.2008.09.018.
  • [32] A. Nateghi and M. Salamat-talab. Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory. Composite Structures, 96:97–110, 2013. doi: 10.1016/j.compstruct.2012.08.048.
  • [33] A. Mahi, E.A. Bedia, A. Tounsi, and I. Mechab. An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions. Composite Structures, 92(8):1877–1887, 2010. doi: 10.1016/j.compstruct.2010.01.010.
  • [34] A. Babaei, M.R.S. Noorani, and A. Ghanbari. Temperature-dependent free vibration analysis of functionally graded micro-beams based on the modified couple stress theory. Microsystem Technologies, 23(10):4599–4610, 2017. doi: 10.1007/s00542-017-3285-0.
  • [35] B. Safaei, R. Moradi-Dastjerdi, and F. Chu. Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations. Composite Structures, 192:28–37, 2018. doi: 10.1016/j.compstruct.2018.02.022.
  • [36] J.N. Reddy. Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science, 45(2-8):288–307, 2007. doi: 10.1016/j.ijengsci.2007.04.004.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6bcd282-8ef8-47cc-81d6-19cac783dca3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.