PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions: part I-fundamentals

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work concerns dynamic similarity criteria of various phenomena occurring in aerodynamics of buildings and structures, hydraulics and fluid dynamics derived from ratios of forces and forces moments affecting these phenomena. It consists of three parts. Part I concerns the bases of dynamic similarity criteria formulated in such a way in relations to the problems of fluid-solid interaction at different fluid-solid relative motions. At the end of this part, authorial method and procedure for determination of dynamic similarity criteria in fluid-solid interaction issues have been presented.
Rocznik
Strony
art. no. e28, 2023
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Wind Engineering Laboratory, Cracow University of Technology, Faculty of Civil Engineering, Warszawska St. 24, 31‑155 Cracow, Poland
  • Wind Engineering Laboratory, Cracow University of Technology, Faculty of Civil Engineering, Warszawska St. 24, 31‑155 Cracow, Poland
  • Wind Engineering Laboratory, Cracow University of Technology, Faculty of Civil Engineering, Warszawska St. 24, 31‑155 Cracow, Poland
Bibliografia
  • 1. Akhgari A, Barannyk O, Oshkai P. Experimental investigation of the performance of a cross-flow wind turbine with and without diffuser. In: Proceedings of the International Conference on Wind Engineering, Amsterdam, 2011.
  • 2. Barenblatt GI. Scaling, self-similarity, and intermediate asymptotics. Cambridge: Cambridge University Press; 1996.
  • 3. Blevins RD. Flow-induced vibration. 2nd ed. New York: Van Nostrand Reinhold; 1990.
  • 4. Cook NJ. The designer’s guide to wind loading of building structures. Part I. Background, damage, survey, wind data and structural classification. Butterworths: Building Research Establishment; 1985.
  • 5. Daugherty RL, Franzini JB. Fluid mechanics with engineering applications. New York: McGraw-Hill Book Company; 1977.
  • 6. Flaga A. Wind vortex-induced excitation and vibration of slender structures single structure of circular cross-section normal to flow. Monograph No. 202. Cracow: Cracow University of Technology; 1996.
  • 7. Flaga A. Modelling of aerodynamical and mechanical characteristics of different types of wind rotors. In: Flaga A, Lipecki T, editors. Recent advances in research on environmental effects on buildings and people. Cracow: Polish Association for Wind Engineering; 2010. p. 65-97.
  • 8. Flaga A. Similarity criteria for linear building objects at aerodynamic and gravitational actions. In: Proceedings of the 14th International Conference on Wind Engineering, Porto Allegre, Brazil, 2015.
  • 9. Flaga A. Basic principles and theorems of dimensional analysis and the theory of model similarity of physical phenomena. Technical transactions. Cracow: Cracow University of Technology; 2015. p. 241-72.
  • 10. Flaga A, et al. Similarity criteria for linear building objects at aerodynamic and gravitational actions. In: Flaga A, et al., editors. Environmental effects on buildings, structures and people – investigations, studies, applications. Cracow: Cracow University of Technology; 2016. p. 287-93.
  • 11. Flaga A, Kłaput R, Augustyn M. Wind tunnel tests of two free-standing lighting protection masts in different arrangements with surrounding roof objects and roof conditions. Eng Struct. 2016;124:539-48.
  • 12. Flaga A. Similarity criteria for the sectional models of power line free-cable bundled conductors at their aeroelastic vibrations. In: Proceedings of the European-African Regional Conference on Wind Engineering, Liege, Belgium, 2017.
  • 13. Flaga A, Flaga Ł. Wind tunnel tests and analysis of snow load distribution on three different large size stadium roofs. Cold Reg Sci Technol. 2019;160:163-75.
  • 14. Flaga A, Pistol A, Krajewski P, Flaga Ł. Aerodynamic and aeroelastic wind tunnel model tests of overhead power lines in triangular configuration under different icing conditions. Cold Reg Sci Technol. 2020;170: 102919.
  • 15. Flaga A, Bosak G, Pistol A, Flaga Ł. Wind tunnel model tests of snow precipitation and redistribution on rooftops, terraces and in the vicinity of high-rise building. Arch Civil Mech Eng. 2019;19:1-9.
  • 16. Flamand O. Scale questions in wind engineering experimentation. Techn Trans Civil Eng. 2015;2:51-61.
  • 17. Flamand O, Żurański JA, Flaga A. Aerodynamic study of two cable stayed bridges in Poland. Int J Fluid Mech Res. 2002;29(3-4):391-400.
  • 18. Flay RGJ. Model tests of wind turbines in wind tunnels. Techn Trans Civil Eng. 2015;2:63-81.
  • 19. Garbatov Y, Saad-Eldeen S, Guedes SC. Hull girder ultimate strength assessment based on experimental results and the dimensional theory. Eng Struct. 2015;100:742-50.
  • 20. Kenan H, Azeloğlu O. Design of scaled down model of a tower crane mast by using similitude theory. Eng Struct. 2020;220:110985.
  • 21. Kimbar G, Flaga A. Similarity criteria of snow precipitation and redistribution and snow load simulation in wind tunnel. In: Flaga A, Lipecki T, editors. Recent advances in research on environmental effects on buildings and people. Cracow: Polish Association for Wind Engineering; 2010. p. 227-45.
  • 22. Kocoń A, Flaga A. Critical velocity measurements of freight railway vehicles roll-over in wind tunnel tests as the method to assess their safety at strong cross winds. J Wind Eng Ind Aerodyn. 2021;211:104559.
  • 23. Ma T, Xing X, Song H, Huang Ch. On similarity criteria of thin-walled cylinder subjected to complex thermomechanical loads. Thin-Walled Struct. 2018;132:549-57.
  • 24. Nakata H, Kiwata T, Furumichi H, Kimura S, Komatsu N, Oshkai P. Wind protection and performance of a cross-flow wind turbine located above a windbreak fence. In: Proceedings of the International Conference on Wind Engineering, Amsterdam, 2011.
  • 25. Nowicki T, Flaga A. Relation between shape and phenomenon of flutter of bridge deck-like bluff bodies. Arch Mech. 2011;63(2):201-20.
  • 26. Siedow LI. Similarity and dimensional analysis in mechanics. New York: Academic Press; 1953.
  • 27. Simiu E, Scanlan R. Wind effects on structures. An introduction to wind engineering. Fundamentals and applications to the design. 3rd ed. New York: John Wiley & Sons; 1996.
  • 28. Song ZJ, Xu MC, Moan T, Pan J. Dimensional and similitude analysis of stiffened panels under longitudinal compression considering buckling behaviours. Ocean Eng. 2019;187:106188.
  • 29. Sonin AA. The physical basis of dimensional analysis. Cambridge: Department of Mechanical Engineering MIT; 2001.
  • 30. Wang L, Zuo X, Liu H, Yue T, Jia X, You J. Flying qualities evaluation criteria design for scaled-model aircraft based on similarity theory. Aerosp Sci Technol. 2019;90:209-21.
  • 31. Westine PS, Dodge FT, Baker WE. Similarity methods in engineering dynamics: theory and practice of scale modelling. Fundamental Studies in Engineering. Amsterdam: Elsevier Science; 2012.
  • 32. Ziereb J. Similarity criteria and modelling. New York: Marcel Dekker; 1971.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6b3d0ee-5452-48c9-a33c-c73e66cfb402
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.