PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The implementation of the electromagnetic wave propagation algorithm in superlattices

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The subject of paper is the implementation of FDTD algorithm for study the electromagnetic wave propagation and to appoint the wavelength distribution of the electromagnetic waves leaving the structure for monochromatic incident wave in the case of a wavelength range of the band gap and in the case of full transmission. Design/methodology/approach: In the paper is implemented algorithm to study the monochromatic electromagnetic wave propagation in the system of quasi one-dimensional aperiodic, lossless and isotropic Severin superlattice using finite-difference time domain method (FDTD) in the C programming language. Findings: The FDTD simulation comparison of the results with those obtained using the matrix method demonstrate good correlation between the two methods. The use of the FDTD method and Fourier transforms (FFT) allows for a more complete picture of the observed phenomena, along with the distribution of time in which it takes place. Research limitations/implications: The structures analyzed in the paper material consisted of quasi one-dimensional lossless and non-dispersive isotropic material. An important would be analysis of the lossy materials with dispersion. Analysis of two-dimensional space would allow to study of propagation of the incident wave different angles. Practical implications: The simulation allows to understand the temporal distribution of the electromagnetic wave propagation in the superlattice structure for the full transmission rate, and in the case of the occurrence of photonic band gap. Originality/value: The novelty is to use FDTD algorithm with FFT to study the behavior of the electromagnetic wave in the electromagnetic wave wavelength of band gap range.
Rocznik
Strony
327--335
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Materials Engineering, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Institute of Physics, Technical University of Częstochowa, ul. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] P. Yeh, Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.
  • [2] M. Born, E. Wolf, Principles of Optics, Pergamon Press, London, 1968.
  • [3] L.M. Briechowski, Wołny w słoistych sriedach, Nauka, Moskwa 1973.
  • [4] A. Yariv, P. Yeh, Optical Waves in Crystals. Propagation and Control of Laser Radiation, John Wiley and Sons, New York, 1984.
  • [5] A. Bjarklev, J. Broeng, A.S. Bjarklev, Photonic Crystal Fibers, Kluwer Academic Publishers, Boston, 2003.
  • [6] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics, Physical Review Letters 58 (1987) 2059-2062.
  • [7] E. Yablonovitch, Photonic crystals, semiconductors lights, World of Science 126/2 (2002) 46-53 (2002) (in Polish).
  • [8] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals. Molding the Flow of Light, Princeton University Press, Singapore, 1995.
  • [9] S.G. Johnson, J.D. Joannopoulos, Photonic crystals, The road from theory to practice, Kluwer Academic Publishers, Boston, 2002.
  • [10] D.J. Lockwood, L. Pavesi, Silicon photonics, seria Applied physics vol. 94, Springer-Verlag, Heidelberg, 2004.
  • [11] K. Sakoda, Optical Properties of Photonic Crystals, Springer-Verlag, Berlin 2001.
  • [12] D.S. Shechmtan, I. Blench, D. Gratias, J.W. Cahn, Metallic phase with long-ranged orientational order and no translational symmetry, Physical Review Letters 53 (1984) 1951-1953.
  • [13] D. Levine, P.J. Steinhardt, Quasicrystals, A new class of ordered structures, Physical Review Letters 53 (1984) 2477-2480.
  • [14] D. Levine, P.J. Steinhardt, Quasicrystals, Definition and structure, Physical Review B 34 (1987) 596-616.
  • [15] P.J. Steinhardt, S. Ostlund, The physics of quasicrystals, World Scientific, Singapore, 1987.
  • [16] P. Guyot, P. Krammer, M. de Boissieu, Quasicrystals, Reports on progress in physics 54 (1991) 1373-1425.
  • [17] D.P. DiVincenzo, P.J. Steinhardt, Quasicrystals, The state of the art, World Scientific, Singapore, 1991.
  • [18] S.J. Poon, Electronic properties of quasicrystals, An experimental review, Advances in Physics 41 (1992) 303-363.
  • [19] Ch. Hu, R. Wang, D.-H. Ding, Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals, Reports on Progress in Physics 63 (2002) 1-39.
  • [20] E.L. Albuquerque, M.G. Cottam, Theory of elementary excitations in quasicrystals structures, Physics Reports 376 (2003) 225-337.
  • [21] E. Abe, Y. Yan, S. J. Pennycook, Quasicrystals as cluster aggregates, Nature Materials 39 (2004) 759-767.
  • [22] X. Zhou, Ch. Hu, P. Gong, Sh. Qiu, Nonlinear elastic properties of decagonal quasicrystals, Physical Review B 70 (2004) 94202-94206.
  • [23] Rostami, S. Matloub, Exactly solvable inhomogeneous Fibonacci-class quasi-periodic structures (optical filtering), Optics Communications 247 (2005) 247-256 (2005).
  • [24] S. John, Strong localization of photons in certain disordered dielectric superlattices, Physical Review Letters 58 (1987) 2486-2489.
  • [25] L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM Journal of Research and Development 14 (1970) 61-65.
  • [26] Wacker, Semiconductor superlattices: a model system for nonlinear transport, Physics Reports, 357 (2002) 1-111.
  • [27] M. Gluck, A.R. Kolovsky, H.J. Korsch, Wannier-Stark resonances in optical and semiconductor superlattices, Physics Reports, 366 (2002) 103-182.
  • [28] L. Jacak, P. Hawrylak, A.Wójs, Quantum Dots, Springer-Verlag, Berlin, Heidelberg, New York, 1998.
  • [29] H.S. Nalwa,Nanostructured Materials and Nanotechnology, Academic Press, New York, 2002.
  • [30] M. Kohler, W. Fritzsche, Nanotechnology: an introduction to nanostructuring techniques, Wiley-VCH Verlag, Weinheim, 2004.
  • [31] Z.L. Wang, Y. Liu, Z. Zhang Handbook of nanophase and nanostructured materials, vol. 1 - Synthesis, Kluwer Academic/Plenum Publishers, New York, 2003.
  • [32] Klauzer-Kruszyna, Propagation of polarized light in selected superstructures aperiodic, PhD thesis, Wrocław (2005) (in Polish).
  • [33] S. Garus, M. Duś-Sitek, E. Zyzik, Effect of iron dopant superlattice FexNi transmission properties (1-x)/Cu. New Technologies and Developments in Metallurgy and Materials Science, Proceedings of the XII International Scientific Conference, Part 2, Częstochowa (2011) (in Polish).
  • [34] S. Garus, J. Garus, K. Gruszka, Emulation of electromagnetic wave propagation in superlattices using FDTD algorithm, New technologies and achievements in metallurgy and materials engineering, Publishing House WIPMiFS Częstochowa University of Technology (2012) 768-0771.
  • [35] D.M. Sullivan, Electromagnetic simulation using the FDTD Method, IEEE Press, 2000.
  • [36] A. Taflove, M. Brodvin, Numerical solution of steady state electromagnetic scattering problems using the time-dependent Maxwell’s equations, IEEE Trans, Microwave Theory Technology 23 (1975) 623-730.
  • [37] Taflove, Computation Electrodynamics, The Finite-Difference Time-Domain Method, Boston, MA, Artech House, 1995.
  • [38] K.S. Kunz, R.J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, Boca Raton, CRC Press, 1993.
  • [39] G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time domain electromagnetic field equations, IEEE Transaction Electromagnetic Compatibility 23 (1981) 377-384.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6afafa5-3a2b-4937-b02f-e36ad333b4a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.