PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of using triangular truth function in fuzzy reasoning based on a fuzzy truth value

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fuzzy systems are widely used in research and applications considering complex information like gene recognition and classification. Because of the character of genetic data, the extensive knowledge bases of such systems contain complex rules described by even thousands of atomic premises. This paper presents an analysis of fuzzy reasoning based on a fuzzy truth value, presented by Baldwin. The solution is an interesting, alternative approach to fuzzy inference. Considering the Zadeh’s compositional rule of inference, the idea of Baldwin has an advantage of resolving the whole inference process within the truth space. The approach is especially convenient for systems with large number of premises in rules, like mentioned gene classification systems. Although the solution of Baldwin is characterized by significantly lower computational complexity than the full implementation of the compositional rule of inference, it is not applied in contemporary systems. Over the years different researchers proposed simplified approaches, which are easier to implement and faster. The analysis presented in this paper considers possible simplifications that could be applied to the approach of Baldwin, where facts and fuzzy truth values are described by triangular membership functions. Such assumptions open the possibility of implementation of fast Baldwin’s inference and applications even for complex genetic data. Nevertheless, the solution would preserve one of the biggest advantage, which is the fuzzy relation, in form of the truth function, between a fact and a premise, throughout the whole inference process. Other fast approaches reduce this relation to only one value.
Rocznik
Tom
Strony
103--110
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
  • University of Silesia, Institute of Computer Science, ul. Będzińska 39, 41-200 Sosnowiec
Bibliografia
  • [1] BALDWIN J. F., A new approach to approximate reasoning using a fuzzy logic. Fuzzy Sets and Systems, 1979, No. 2, pp. 309-325.
  • [2] BALDWIN J. F., GUILD N. C. F., Feasible algorithms for approximate reasoning using fuzzy logic. Fuzzy Sets and Systems, 1980, No. 2, pp. 225–251.
  • [3] BELLMAN R. E., ZADEH L. A., Modern Uses of Multiple-Valued Logic, chapter Local and Fuzzy Logics, 1977, pp. 103-165.
  • [4] BRINTHA S. J., BHUVANESWARI V., Clustering microarray gene expression data using type 2 fuzzy logic. 3rd National Conference on Emerging Trends and Applications in Computer Science (NCETACS), 2012, pp. 147-151.
  • [5] CHUANG C. L., CHEN C. M., SHIEH G. S., JIANG J. A., A neuro-fuzzy inference system to infer gene-gene interactions based on recognition of microarray gene expression patterns. IEEE Congress on Evolutionary Computation (CEC 2007), 2007, pp. 904-910.
  • [6] CHIU S. H., TSAI M. H., WU H. C., CHEN W. C., SHRESTHA U., KUO S., Application of Fuzzy c-Means and Self-organizing maps for genes clustering in mouse brain microarray data analysis. 9th Int.Conf. Fuzzy Systems and Knowledge Discovery (FSKD), 2012, pp. 1104-1108.
  • [7] CZOGAŁA E., ŁESKI J., Fuzzy and Neuro-Fuzzy Intelligent Systems. Physica-Verlag, Springer-Verlag Comp., Heidelberg, 2000.
  • [8] DUBOIS D., PRADE H., Fuzzy sets in approximate reasoning, part 1: Inference with possibility distribution. Fuzzy Sets and Systems, 1991, No. 40, pp. 143–202.
  • [9] DUBOIS D., LANG J., PRADE H., Fuzzy sets in approximate reasoning, part 2: Logical approaches. Fuzzy Sets and Systems, 1991, No. 40, pp. 203–244.
  • [10] FUTSCHIK M. E., KASABOV N. K., Fuzzy clustering of gene expression data. Proc. 2002 IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE’02), 2002, Vol. 1, pp. 414-419.
  • [11] HAVENS T. C., KELLER J. M., POPESCU M., BEZDEK J. C., MACNEAL REHRIG E., APPEL H. M., SCHULTZ J. C., Fuzzy cluster analysis of bioinformatics data composed of microarray expression data and gene ontology annotations. Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2008), 2008, pp. 1-6.
  • [12] HE Y., TANG Y., ZHANG Y. Q., SUNDERRAMAN R., Mining fuzzy association rules from microarray gene expression data for leukemia classification. IEEE Int. Conf. Granular Computing, 2006, pp. 461-464.
  • [13] HO S. Y., HSIEH C. H., CHEN H. M., HUANG H. L., Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis. Biosystems, 2006, No. 85, pp. 165-176.
  • [14] KUDŁACIK P., Advantages of an Approximate Reasoning Based on a Fuzzy Truth Value. Journal of Medical Informatics & Technologies, 2010, Vol. 16, pp. 125-132.
  • [15] KUDŁACIK P., Operations on fuzzy sets with piece-wise linear membership function (in Polish), Studia Informatica, 2008, 29(3A):91–111.
  • [16] KUDŁACIK P., Performance Evaluation of Baldwin’s Fuzzy Reasoning for Large Knowledge Bases. Journal of Medical Informatics & Technologies, 2012, Vol. 20, pp. 29-38.
  • [17] KUDŁACIK P., Structure of knowledge base in FUZZLIB library (in Polish). Proc. 4th Conf. Databases: Application and Systems’10. Ustron 25-28 May 2010, Studia Informatica, 31(2A):469–478.
  • [18] LARSEN P. M., Industrial Applications of fuzzy logic control. International Journal of Man-Machine Studies, 1980, Vol. 1, No. 12, pp. 3-10.
  • [19] MA P. C. H., CHAN K. C. C., Incremental Fuzzy Mining of Gene Expression Data for Gene Function Prediction. IEEE Trans. Biomedical Engineering, 2011, Vol. 58, Issue 5, pp. 1246-1252.
  • [20] MAJI P., PAUL S., Rough-Fuzzy Clustering for Grouping Functionally Similar Genes from Microarray Data. IEEE/ACM Trans on Computational Biology and Bioinformatics, 2012, Vol. PP , Issue 99, pp. 1.
  • [21] MAMDANI E. H., ASSILAN S., An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies, 1975, 20(2):1–13.
  • [22] MARGHNY M. H., EL-SEMMAN I. E., Extracting fuzzy classification rules with gene expression programming. Proc. Int. Conf. Artificial Intelligence and Machine Learning (AIML), 2005, Cairo, Egypt.
  • [23] MOHAMMADI A., SARAEE M. H., Estimating Missing Value in Microarray Data Using Fuzzy Clustering and Gene Ontology. IEEE Int. Conf. Bioinformatics and Biomedicine (BIBM ’08), 2008, pp. 382-385.
  • [24] PAUL A., SIL J., Sample selection of microarray data using rough-fuzzy based approach. World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), 2009, pp. 379-384.
  • [25] PEREZ M., RUBIN D. M., SCOTT L. E., MARWALA T., STEVENS W., A Hybrid Fuzzy-SVM classifier, applied to gene expression profiling for automated leukaemia diagnosis. Proc. of IEEE 25th Convention of Electrical and Electronics Engineers, Israel, 2008.
  • [26] SCHAEFER G., NAKASHIMA T., YOKOTA Y., ISHIBUCHI H., Fuzzy Classification of Gene Expression Data. Proc. IEEE Int. Conf. Fuzzy Systems, 2007, pp. 1-6.
  • [27] SUGENO M., KANG G. T., Structure identification of fuzzy model, Fuzzy sets and systems, 1988, Vol. 28, pp. 15-33.
  • [28] TAKAGI H., SUGENO M., Fuzzy identification of systems and it’s application to modeling and control, IEEE Trans. Systems, Man and Cybernetics, Vol. 15(1), 1985, pp. 16-132.
  • [29] TSUKAMOTO Y., Advances in Fuzzy Set Theory and Applications, chapter: An Approach to Fuzzy Reasoning Method, North-Holland, Amsterdam, 1979, pp. 137–149.
  • [30] VERMA N. K., GUPTA P., AGRAWAL P., YAN CUI, Fuzzy rule based unsupervised approach for salient gene extraction. IEEE Applied Imagery Pattern Recognition Workshop (AIPRW), 2009, pp. 1-5.
  • [31] WANG Y. P., GUNAMPALLY M., CHEN J, BITTEL D., BUTLER M. G., CAI W. W., Accurate Quantification of Gene Expression using Fuzzy Clustering Approaches. IEEE Int. Workshop on Genomic Signal Processing and Statistics (GENSIPS 2007), 2007, pp. 1-4.
  • [32] WANG Z., PALADE V., A Comprehensive Fuzzy-Based Framework for Cancer Microarray Data Gene Expression Analysis. Proc. 7th IEEE Int. Conf. Bioinformatics and Bioengineering (BIBE 2007), 2007, pp. 1003-1010.
  • [33] WU G. P. K., CHAN K. C. C., WONG A. K. C., BIN WU, Unsupervised discovery of fuzzy patterns in gene expression data. Proc. IEEE Int. Conf. Bioinformatics and Biomedicine (BIBM), 2010, pp. 269-273.
  • [34] ZADEH L. A., Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics, 1973, Vol. 1, No. 3, pp. 28-44.
  • [35] ZADEH L. A., The concept of a linguistic variable and it’s application to approximate reasoning. parts 1-3. Information Science, 1975, Vol. 8-9, No. 8, pp. 43-80, pp. 199-249, 301-357.
  • [36] ZADEH L. A., Fuzzy logic and approximate reasoning. Syntheses, 1975, No. 30, pp. 407-428.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6ae6aa4-eece-4b87-9325-01ab74c7fe3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.