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Fuzzy systems are widely used in research and applications considering complex information like gene
recognition and classification. Because of the character of genetic data, the extensive knowledge bases of such
systems contain complex rules described by even thousands of atomic premises. This paper presents an analysis
of fuzzy reasoning based on a fuzzy truth value, presented by Baldwin. The solution is an interesting, alternative
approach to fuzzy inference. Considering the Zadeh’s compositional rule of inference, the idea of Baldwin
has an advantage of resolving the whole inference process within the truth space. The approach is especially
convenient for systems with large number of premises in rules, like mentioned gene classification systems.
Although the solution of Baldwin is characterized by significantly lower computational complexity than the full
implementation of the compositional rule of inference, it is not applied in contemporary systems. Over the years
different researchers proposed simplified approaches, which are easier to implement and faster. The analysis
presented in this paper considers possible simplifications that could be applied to the approach of Baldwin,
where facts and fuzzy truth values are described by triangular membership functions. Such assumptions open
the possibility of implementation of fast Baldwin’s inference and applications even for complex genetic data.
Nevertheless, the solution would preserve one of the biggest advantage, which is the fuzzy relation, in form of
the truth function, between a fact and a premise, throughout the whole inference process. Other fast approaches
reduce this relation to only one value.

1. INTRODUCTION

Fuzzy systems are widely used in many areas of engineering for a couple of decades [7], [18], [21].
Their popularity is based on simple and clear approach to uncertainty, which is inevitable in measuring
and examining processes of surrounding world [34], [35], [36].

Throughout the years researchers developed different approaches to the problem of fuzzy inference.
The theoretical basics were introduced by Zadeh [34] and since then other solutions were proposed.
The most popular in applications are approaches presented by Mamdani and Assilan [21], Larsen [18],
Takagi, Sugeno and Kang [28], [27] as well as solution of Tsukamoto [29].

In the yearly years of the first fuzzy systems an interesting idea derived directly from classical logic
was presented by Baldwin [1], [2]. Unfortunately, probably because of it’s complexity in comparison
with other approaches, the solution based particularly on a fuzzy truth value was forgotten. Although
the idea of a fuzzy truth value used in such form for a fuzzy inference was considered by Belman and
Zadeh [3] as well as Dubois and Prade [8], [9], the approach was not widely applied.

Nevertheless, the approximate reasoning introduced by Baldwin in 1979 has advantages, especially in
case of systems with large knowledge bases [14]. Such problems are very often encountered in different
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research and applications considering complex information. Gene recognition and classification are
typical examples, where rules in the knowledge base consist of even thousands of atomic premises.
The problem of gene classification is extensively studied using fuzzy systems by many researchers
throughout the recent years. The following papers show that the problem is very important and valid
[4], [5], [6], [10], [11], [12], [13], [19], [20], [22], [23], [24], [25], [26], [30], [31], [32], [33].

The aim of this paper is to propose a faster approach of Baldwin’s fuzzy reasoning using triangular
membership functions of premises and triangular truth functions. The analysis presented in the following
sections is a direct continuation of [16], which considers the computational complexity of Baldwin’s
approach. The conclusion of the previous work directed future research to simplification of obtaining
truth function of a premise and compound truth function. These operations invoked repeatedly determine
the output computation time in case of mentioned rules with multiple atomic premises.

A general structure of subsequent sections is organized in the following order. First, the approach
of Baldwin is shortly presented. Next section describe the problem of obtaining a piece-wise linear
function on the basis of algorithms implemented within the Fuzzlib library [17], [15]. Consequences
of using triangular membership functions in Baldwin’s reasoning and simplified junctions are analyzed
afterwards. The final sections contain the analysis of output computational complexity for simplified
approach, summarized with the conclusion.

2. THE FUZZY INFERENCE OF BALDWIN

The process of inference based on the fuzzy truth value can be broken down into four stages. The
first involves obtaining a truth function of a premise, which directly reflects conformity of a fact and a
premise. The second phase is responsible for obtaining one compound truth function in case the rule
has more atomic premises.
Assuming the following rule "if humidity is high and temperature is medium, then fan speed is medium"
the first phase would be responsible for calculating two truth functions for two atomic premises:
"humidity is high" and "temperature is medium", based on the relevant facts (the real state of humidity
and temperature). In case of K atomic premises K truth functions of a premise have to be obtained.
The second stage in this case would join two obtained functions into one fuzzy truth function describing
overall conformity of two facts with consideration of the junction type (and, or). For K truth functions
K − 1 junction operations have to be performed.

Fuzzy truth functions (τ ) are defined in [0, 1] ranges (considering the domain and counter-domain)

τ : [0, 1]→ [0, 1]. (1)

Therefore, the inference process preserves the fuzzy relation between a fact and a premise. In other
simplified approaches that are widely applied, this relation is reduced into only one value from [0, 1]
range. Obtaining a compound result in this case for multiple atomic premises within a rule involves
simple operations on single values, which is faster.

After obtaining the compound truth function of the compound premise, the inference moves into the
third stage: calculating the truth function of conclusion. This function is further used to modify the
fuzzy conclusion and by that obtaining the fuzzy result of inference at the fourth and the last phase.
In case of the sample rule presented above (the conclusion "fan speed is medium") the output truth
function would transform the membership function of fuzzy expression "medium" into the appropriate
form prepared for aggregation with results from other rules.

The last two phases are not significant for large number of atomic premises [16] and will not be
further considered in this paper.

2.1. COMPUTATIONAL COMPLEXITY

The analysis presented in [16] assumed the piece-wise linear description of membership functions,
which allowed to generally describe the computational complexity of the presented process by the
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following equation [16]

KCminDY log2N + (K − 1)2C2
minDY + C2

minDY +N log2(CminDY ). (2)

The parameter N stands for the number of fuzzy sets’ description nodes (piece-wise linear membership
functions). K determines the number of premises and CminDY denotes the complexity of truth function
description according to additional minDY parameter (the smaller minDY the more description nodes
are needed for obtained truth function) [16].

The first two elements of (2) are involved with obtaining K truth functions of atomic premises and
K−1 operations of obtaining compound truth function (subsequent junction of given K truth functions).
It can be observed that the two stages strongly depend on value of CminDY , which is a number of truth
function nodes. Therefore, the analysis presented in this paper considers decreasing the number of nodes
to a very low and almost constant level, needed only to properly describe all possible forms of triangular
truth functions.

3. OBTAINING TRUTH FUNCTION: THE GENERAL APPROACH

The Fuzzlib library [17], [15] implements a divide and conquer algorithm in order to obtain description
nodes of truth functions. Such solution was chosen because generally a truth function can take many
different forms, which depend on chosen junction operator (a variety of T-norms and S-norms [7])
and type of used implication. The algorithm is relatively fast because of logarithmic computational
complexity of the approach.

Subsequent steps of the algorithm are shown in Fig. 1 for three examples. The solution aims to obtain
nodes of piece-wise linear functions to match desirable forms of the functions designated by dashed
lines. Each column of charts show three following steps of function creation for three characteristic
examples.

Fig. 1. Visualization of the algorithm obtaining a piece-wise linear truth function for three sample cases presented in subsequent rows.

Procedures creating each type of truth function differ only in calculations of node values. Therefore,
further analysis focuses on procedures obtaining a truth function of a premise and compound truth
function.
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3.1. TRUTH FUNCTION OF A PREMISE

The truth function of a premise denoted by τP can be described by the following equation [1]

∀
η∈[0,1]

τP (η) = sup
x∈X

η=µA(x)

[
µA′(x)

]
, (3)

where µA and µA′ represent respectively membership functions of a premise and a fact, described in
the domain X . In other words, τP represents the largest values of µA′ in these ranges of X , where µA
takes the same values.

Therefore, obtaining one node of piece-wise linear τP for specified value of η needs searching through
the X domain (description nodes of µA) and looking for points where τP (x) = η. Further, for these
points µA′ is analyzed and it’s maximum value is chosen. The complexity in this case is obviously
linear and depends on number of nodes describing µA membership function.

3.2. COMPOUND TRUTH FUNCTION

The compound truth function τC obtained from two other truth functions τ1 and τ2 can be described
by the following equation [1]

∀
z∈[0,1]

τC(z) = sup
x,y∈[0,1]
x?T1y=z

[
τ1(x) ?T2 τ2(y)

]
, (4)

where ?T1 , ?T2 represent any T-norms, from which ?T1 models the and junction. In case of or junction
the equation presented above takes the following form [1]

∀
z∈[0,1]

τC(z) = sup
x,y∈[0,1]
x?Sy=z

[
τ1(x) ?T τ2(y)

]
, (5)

where similarly, ?T represents any T-norm, but ?S is any S-norm modeling junction or. Therefore, basing
on the last equation, obtaining one node of compound truth function (given value of z) involves analysis
of range where x ?S y = z and finding the maximum value of τ1(x) ?T τ2(y) results. Implementation
of this approach would also be characterized by a linear time complexity depending on the number of
nodes in truth functions (an analysis of whole description of τ1 and τ2 in the worst case).

4. TRIANGULAR MEMBERSHIP FUNCTIONS
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Fig. 2. Simplified description of truth functions in case of triangular membership function of a fact and trapezoidal membership function
of a premise.

In many cases the uncertainty of a fact is modeled by using a triangular membership function. It is
particularly convenient in piece-wise linear description of membership functions, because the number
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of nodes is the smallest. Considering a trapezoidal description of premises, which is also very popular,
the description of truth functions is also simplified. The problem is depicted in Fig.2, where three truth
functions were presented for three sample relations between facts and premises.

The aim is to eliminate the process of finding description nodes to meet the certain level of precision
and provide the solution based on only several nodes. However, in this case their position can be obtained
directly from characteristic nodes of analyzed fact and premise. Such approach would be much more
efficient and in case of using triangular facts and trapezoidal premises even equal to the full approach.

4.1. SIMPLIFIED TRUTH FUNCTION OF A PREMISE

The Fig.3 presents sample truth functions of a premise. Depicted situations cover all characteristic
types of τP assuming described environment, which is triangular membership function of a fact and
trapezoidal membership function of a premise.
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Fig. 3. Sample triangular truth functions and nodes needed to describe them.

It can be noticed, that each type of situation can be described using just three nodes and sometimes
even two. The characteristic nodes of fact and premise responsible for the shape of produced truth
function are marked in Fig.4 for three cases. Subsequent situations show transition from low to high
conformity between fact and premise. In each presented case the most important are values marked as
a, b and c.
Therefore, analyzing the cases, it can be observed that for computation purposes the nodes describing
the fact should be confronted with nodes representing slopes of membership function of the premise.
This involves locating the position of the fact triangle according to the appropriate slope of the premise
and then obtaining correct values. Assuming the larger width of the slope than the width of the triangle,
only 4 nodes in both functions need to be processed.
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Fig. 4. Characteristic description nodes and values of fact and premise during calculations of truth function.

It must be mentioned, that such approach allows to use also other types of membership functions,
like i.e. Gaussian. The solution would analyze only three points of each function (assumed beginning
point, the peak and the end point), just as in the triangle case. However, the specifics of Gaussian slopes
would be appropriately reflected in the first and the last produced nodes of the truth function and will
be different than simple trapezoidal and triangular case. Although, the result in this situation would not
be precise the general idea of fuzzy truth function describing a relation between facts and premises
would be preserved.
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4.2. SIMPLIFIED COMPOUND TRUTH FUNCTION

The definition of compound truth function provided by (4) and (5) does not clearly indicate the
behavior of junction operations. Equations are directly obtained from Zadeh’s extension principle, that
extends junction of two precise values to junction of two fuzzy sets: truth functions. The flexible
implementation of the process is also quite problematic because of the possibility of using any T-norms
and S-norms. Due to the big difference in analysis for different norms the Fuzzlib library contains
only several available functions (only continuous): minimum, maximum, product, probabilistic sum,
Einstein’s t-norm and s-norm and t-norm of Hamacher.

The simplified version of truth functions described mostly by three nodes allows to consider a
simplified approach to composition. The general idea is depicted in Fig.5, where results of junction
with ”or” and ”and” operators are presented. All examples use minimum and maximum as junction
operators. Each row of functions corresponds to different example. The first and the second column
contain parameters of composition, while the third and the fourth contain the results of ”and” and ”or”
operations respectively.
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Fig. 5. Visualization of simplified composition of two truth functions.

First situation from the top show two extreme truth functions. τ1 = ”absolutely false” represent full
inconsistency of some fact with a premise: triangular description of the fact is either on the left or on
the right side of the trapezoidal description of the premise

∀
x∈X

µA(x)>0

µA′(x) = 0. (6)

On the other hand, τ2 = ”absolutely true” corresponds to full consistency of a fact and a premise:
triangular description of the fact is included within the kernel of the premise

∀
x∈X

µA(x)<1

µA′(x) = 0. (7)
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The results of composition are in this case obvious. ”Absolutely false” as the result of ”and” operation
and ”absolutely true” as the result of ”or” junction.

Similar results are obtained for the second example, where the difference between truth functions is
big enough that either one or the second function is copied.

The contribution of both truth functions in the results can be observed for the last two cases, where
nodes of τ1 and τ2 are used in the output. Generally, the algorithm used to obtain the result can perform
the appropriate junction operation (T-norm or S-norm) on domain values of relevant nodes in two truth
functions. This produces the new domain coordinates of the output nodes. If the relevant nodes differ
in values of counter-domain coordinates, an appropriate value is chosen respectively to the type of
junction.

5. COMPLEXITY ANALYSIS

Considering simplified stages of obtaining two analyzed types of truth functions, the general time
complexity of the approach can be described by the following equation

KC log2N + (K − 1)C + C2 +NC, (8)

where in comparison to (2) CminDY was replaced by a constant C. As it was mentioned before, the
computation does not depend on specified precision parameter anymore (CminDY ) but on a constant
(C) involved with the analysis of only several important nodes. Therefore, for big numbers of K the
analysis becomes comparable to other widely used simplified approaches, which was the aim of this
work.

6. CONCLUSION

The paper presented the analysis of possible simplifications in the fuzzy reasoning of Baldwin.
According to the previous work ([16]), the problem was focused on two important stages: obtaining a
truth function of a premise and a compound truth function.

Suggested modifications described in previous sections strongly simplify the calculations needed for
the full approach of Baldwin implemented within the Fuzzlib library. Now, obtaining truth functions of a
premise and compound truth functions does not depend on precision parameter and involves processing
of only several nodes.

Because of uncomplicated and efficient computations the solution allows to easily apply any T-norm
and S-norm as the junction operation. Moreover, the advantage of extended fuzzy relation between facts
and premises is preserved in the reasoning process. Described benefits makes the simplified reasoning
based on a fuzzy truth value a very flexible tool in research and applications.
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