PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Logic Operation Model of the Complementer Based on Two-domain DNA Strand Displacement

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
DNA strand replacement technology has the advantages of simple operation which makes it becomes a common method of DNA computing. A four bit binary number Complementer based on two-domain DNA strand displacement is proposed in this paper. It implements the function of converting binary code into complement code. Simulation experiment based on Visual DSD software is carried out. The simulation results show the correctness and feasibility of the logic model of the Complementer, and it makes useful exploration for further expanding the application of molecular logic circuit.
Wydawca
Rocznik
Strony
277--288
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Advanced Design and Intelligent Computing, Dalian University of Technology, China
  • Ministry of Education, Dalian University, Dalian China
  • Key Laboratory of Advanced Design and Intelligent Computing, Dalian University of Technology, China
  • Ministry of Education, Dalian University, Dalian China
autor
  • Key Laboratory of Advanced Design and Intelligent Computing, Dalian University of Technology, China
  • Ministry of Education, Dalian University, Dalian China
autor
  • School of Computer Science and Technology, Dalian University of Technology, Dalian China
Bibliografia
  • [1] Adleman LM. Molecular computation of solutions to combinatorial problems. Science. 1994; 266(5187),1021-1024. Available from: http://www.jstor.org/stable/2885489.
  • [2] Zhao J, Zhang ZZ, Shi YY, Li XX, He L. Linearly programmed DNA-based molecular computer operated on magnetic particle surface in test-tube. Science Bulletin. 2004; 49(1):17-22. doi:10.1360/03wc0357.
  • [3] Zhang DY, Turberfield AJ, Yurke B, Winfree E. Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA. Science. 2007; 318(5853), 1121-1136. doi: 10.1126/science.1148532.
  • [4] Wang Z, Huang D, Meng H, Tang C. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation. Bio Systems. 2013; 114(1):1-7. doi:10.1016/j.biosystems.2013.07.007.
  • [5] Wang Z, Tan J, Huang D, Ren Y, Ji Z. A biological algorithm to solve the assignment problem based on DNA molecules computation. Applied Mathematics & Computation. 2014; 244(2):183-190. doi:10.1016/j.amc.2014.06.098.
  • [6] Murieta ISD, Rodriguez-Paton A. Probabilistic Reasoning with a Bayesian DNA Device Based on Strand Displacement. Natural Computing. 2014,13(4):549-557. doi: 10.1007/s11047-013-9406-5.
  • [7] Condon A, Kirkpatrick B, Mauch J. Reachability Bounds for Chemical Reaction Networks and Strand Displacement Systems. Natural Computing. 2014,13(4):499-516 doi: 10.1007/s11047-013-9403-8.
  • [8] Pinheiro AV, Han D, Shih WM, Yan H. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology. 2011; 6(12):763-772. doi: 10.1038/nnano.2011.187.
  • [9] Wei B, Dai M, Yin P. Complex shapes self-assembled from single-stranded DNA tiles. Nature. 2012; 485(7400):623-626. doi: 10.1038/nature11075.
  • [10] Zhang DY. Towards domain-based sequence design for DNA strand displacement reactions. DNA Computing and Molecular Programming, Springer, Berlin. 2011; 6518:162-175. doi: 10.1007/978-3-642-18305-8-15.
  • [11] Hwang MT, Landon PB, Lee J, Choi D, Mo AH, Glinsky G, et al. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113(26), 7088-7093. doi: 10.1073/pnas.1603753113.
  • [12] Saghatelian A, Volcker NH, Guckian KM, Lin VS, Ghadiri MR. DNA-based photonic logic gates: AND, NAND, and INHIBIT. Journal of the American Chemical Society, 2003; 125(2):346-347. doi: 10.1021/ja029009m.
  • [13] Elbaz J, Lioubashevski O, Wang F, Remacle F, Levine RD, Willner I. DNA computing circuits using libraries of DNAzyme subunits. Nature Nanotechnology. 2010; 5(6):417-422. doi: 10.1038/nnano.2010.88.
  • [14] Kan A, Sakai Y, Shohda KI, Suyama A. A DNA based molecular logic gate capable of a variety of logical operations. Natural Computing. 2014; 13(4):573-581. doi: 10.1007/s11047-013-9394-5.
  • [15] Nishimura T, Ogura Y, Tanida J. Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold. Applied Physics Letters. 2012; 101(23), 233703-233704. doi: 10.1063/1.4769812.
  • [16] Song T, Garg S, Mokhtar R, Bui H, Reif J. Analog Computation by DNA Strand Displacement Circuits. Acs Synthetic Biology. 2016; 5(8), 898-912. doi: 10.1021/acssynbio.6b00144.
  • [17] Cardelli L. Two-domain DNA strand displacement. Mathematical Structures in Computer Science. 2010; 26(2):247-261. doi: 10.4204/EPTCS.26.5.
  • [18] Cardelli L. Strand Algebras for DNA Computing. Natural Computing. 2011; 10(1):407-428. doi:10.1007/s11047-010-9236-7.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6ae0c83-7602-465b-85fe-db16583811b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.