PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-Response Optimization of Rotary Electrode EDM Process Parameters for Tungsten Carbide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electrical discharge machining (EDM) is a potent technique widely applied to machining materials like EN-8M steel and composite materials. The surface quality achieved through EDM is significantly affected by the settings of its parameters and the type of material being processed. In this context, the focus of research has often been on heavy metals and titanium and magnesium alloys among lighter metals. This study aims to investigate the impact of EDM parameters, specifically on Tungsten Carbide, a material gaining traction across various industries. Our research involved a thorough parametric analysis utilizing a full factorial method to examine factors influencing surface roughness (SR) and material removal rate (MRR). This paper highlights the optimization of MRR using a Rotary electrode attachment. Experiments were conducted employing factorial design to delve deeper into the machining characteristics of Tungsten Carbide with a 4 mm Brass-coated rod as the electrode. Key parameters such as summit current, electrode rotation speed, and Pulse on time were systematically adjusted. The analysis of the machining parameters revealed their significant influence on the outcomes, with p-values falling below 0.05, underscoring their critical role in the EDM process. The developed mathematical models demonstrated a high R-squared value alongside minimal error percentages. The most critical parameters identified for optimal results included an electrode rotational speed of 150 rpm, a summit current of 1.22 A, and a Pulse on time set at 8.45 ms.
Słowa kluczowe
Twórcy
  • Benha Faculty of Engineering, Benha University / Department of Mechanical Engineering, Egypt
  • Mechanical and Aerospace Engineering Department, College of Engineering, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
  • National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
  • On leave from mechanical design department, faculty of engineering, El Mataria, Helwan University, Cairo, Egypt
  • Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University, Tanta, Egypt
  • Benha Faculty of Engineering, Benha University / Department of Mechanical Engineering, Egypt
Bibliografia
  • Abidi, M.H., Al-Ahmari, A.M., Umer, U. and Rasheed, M.S. (2018). Multi-objective optimization of micro-electrical discharge machining of nickeltitanium-based shape memory alloy using MOGAII. Measurement, 125, 336–349. DOI: 10.1016/J.MEASUREMENT.2018.04.096.
  • Al-Amin, M., Abdul-Rani, A.M., Ahmed, R. and Rao, T.V. (2021). Multiple-objective optimization of hydroxyapatite-added EDM technique for processing of 316L-steel. Materials and Manufacturing Processes, 36(10), 1134–1145. DOI: 10.1080/10426914.2021.1885715.
  • Amini, S., Atefi, R. and Solhjoei, N. (2011). The Influence of EDM Parameters in Finishing Stage on Surface Quality of Hot Work Steel Using Artificial Neural Network. AIP Conf Proc, 1315(1), 1228–1233. DOI: 10.1063/1.3552350.
  • Amorim F.L., and Weingaertner, W.L. (2007). The behaviour of graphite and copper electrodes on the finish die-sinking electrical discharge machining (EDM) of AISI P20 tool steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 29(4), 366–371. DOI: 10.1590/S1678-58782007000400004.
  • Apostolopoulou, C. and Al-Juboori, L.A. (2019). Optimization of Micro-Electrical Discharge Machining Parameters of Ti6AL4V Component: A Mapping Study. Journal of Mathematics Research, 12(1), 22. DOI: 10.5539/JMR.V12N1P22.
  • Bharti, P.S., Maheshwari, S., & Sharma, C. (2010). Experimental investigation of Inconel 718 during die-sinking electric discharge machining. International Journal of Engineering Science and Technology, 2(11), 6464–6473 Available: https: //www.researchgate.net/publication/50366320_Experimental_investigation_of_Inconel_718_during_die-sinking_electric_discharge_machining
  • Bharti, P. S., Maheshwari, S. and Sharma, C. (2012). Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. Journal of Mechanical Science and Technology, 26(6), 1875-1883. DOI: 10.1007/S12206-012-0411-X/METRICS.
  • Bhaumik, M. and Maity, K. (2019). Effect of deep cryotreated tungsten carbide electrode and SiC powder on EDM performance of AISI 304. Particulate Science and Technology, 37(8), 977–988. DOI: 10.1080/02726351.2018.1487491.
  • Chandrashekarappa, M.P., Kumar, S., Jagadish, G., Pimenov, D.Y. and Giasin, K. (2021). Experimental Analysis and Optimization of EDM Parameters on HcHcr Steel in Context with Different Electrodes and Dielectric Fluids Using Hybrid Taguchi-Based PCA-Utility and CRITIC-Utility Approaches. Metals, 11(419). DOI: 10.3390/MET11030419.
  • Chattopadhyay, K.D., Satsangi, P.S., Verma, S., & Sharma, P.C. (2008). Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system. International Journal of Advanced Manufacturing Technology, 38(9–10), 925–937. DOI: 10.1007/S00170-007-1149-Y/METRICS.
  • Chen, S.M. and Lee, L.W. (2010). Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method. Expert Syst Appl, 37(4), 2790-2798. DOI: 10.1016/J.ESWA.2009.09.012.
  • Dinesh, D., Sangaravadivel, P., Jeevith, R., Kishore, M., Deepith, N. & Srikanth, M. (2024). Investigation of Inconel 718 on Electrical Discharge MachiningUsing Copper and Copper Alloy-Tungsten Disulfide Electrodes. SAE Technical Papers. DOI: 10.4271/2023-01-5149.
  • El-Taweel, T.A. (2009). Multi-response optimization of EDM with Al-Cu-Si-TiC P/M composite electrode. International Journal of Advanced Manufacturing Technology, 44(1–2), 100–113. DOI: 10.1007/S00170-008-1825-6/METRICS.
  • El-Taweel, T.A., Youssef, A.H. and Hewidy, A.M. (2010). Optimum selection of wedm conditions for ck45 steel. ERJ. Engineering Research Journal, 33(3), 297–306. DOI: 10.21608/ERJM.2010.67331.
  • El-Zathry, N.E., Akinlabi, S., Woo, W.L. (2024). Friction Stir-Based Techniques: An Overview. Weldin in the World, 69, 327–361.
  • Huo, J., Liu, S., Wang, Y., Muthuramalingam, T. and Ngoc Pi, V. (2019). Influence of process factors on surface measures on electrical discharge machined stainless steel using TOPSIS. Mater Res Express, 6(8), 086507. DOI: 10.1088/2053-1591/AB1AE0.
  • Khudhir, W.S., Ahmed, B.A., & Shukur, J.J. (2024). Experimental investigation and optimization of surface roughness and kerf width in wire-EDM process. AIP Conf Proc, 3002(1). DOI: 10.1063/5.0206629/3297529.
  • Kumar, S., Thirupathi, N. and Saraswathamma, K. (2020). Experimental Investigation and MultiObjective Optimization of Die sink EDM Process Parameters on Inconel-625 alloy by using Utility Function Approach. Mater Today Proc, 24, 995–1005. DOI: 10.1016/J.MATPR.2020.04.412.
  • Lee, S.H. and Li, X.P. (2001). Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of tungsten carbide. Journal of Material Processing Technology, 115( 3), 344–358. DOI: 10.1016/S0924-0136(01)00992-X.
  • Li, J., Shen, F. and Guo, M. (2012). Influence of Material Microstructure on Micro EDM. Applied Mechanics and Materials, 130–134, 927–930. DOI: 10.4028/www.scientific.net/amm.130-134.927.
  • Manikandan, R. and Venkatesan, R. (2012). Optimizing the machining parameters of micro-EDM for Inconel 718. Journal of Applied Sciences, 12(10), 971–977. DOI: 10.3923/JAS.2012.971.977.
  • Manivannan R. and Kumar, M.P. (2017). Multiattribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method. Materials and Manufacturing Processes. DOI: 10.1080/10426914.2016.1176182.
  • Manivannan R. and Kumar, M.P. (2016). Multi-response optimization of Micro-EDM process parameters on AISI304 steel using TOPSIS. Journal of Mechanical Science and Technology, 30(1), 137–144. DOI: 10.1007/S12206-015-1217-4/METRICS.
  • Meel, R., Singh, V., Katyal, P. and Gupta, M. (2022). Optimization of process parameters of micro-EDD/EDM for magnesium alloy using Taguchi based GRA and TOPSIS method. Mater Today Proc, 51, 269–275. DOI: 10.1016/J.MATPR.2021.05.287.
  • Nadda, R., Kumar, R., Singh, T., Chauhan, R., Patnaik, A. and Gangil, B. (2018). Experimental investigation and optimization of cobalt bonded tungsten carbide composite by hybrid AHP-TOPSIS approach. Alexandria Engineering Journal, 57(4), 3419–3428. DOI: 10.1016/J.AEJ.2018.07.013.
  • Naeim, N., AbouEleaz, M.A., & Elkaseer, A. (2023). Experimental Investigation of Surface Roughness and Material Removal Rate in Wire EDM of Stainless Steel 304. Materials 2023, 16(3), 1022. DOI: 10.3390/MA16031022.
  • Nayim, S.M., Hasan, M.Z., Jamwal, A., Thakur, S. and Gupta, S. (2019). Recent trends & developments in optimization and modelling of electro-discharge machining using modern techniques: A review. AIP Conf Proc, 2148(1). DOI: 10.1063/1.5123973/906677.
  • Padhi, P.C. Mahapatra, S.S. Yadav, S.N. and Tripathy, D.K. (2016). Multi-Objective Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Weighted Sum Genetic Algorithm Approach. https://doi.org/10.1142/S0219686716500086, 15(2), 85–100. DOI: 10.1142/S0219686716500086.
  • Pekarčíková M.(2023). Case Study: Testing the Overall Efficiency of Equipment in the Production Process in TX Plant Simulation Software. Management and Production Engineering Review, 14(1), 34–42. DOI: 10.24425/MPER.2023.145364.
  • Ponappa, K., Aravindan, S., Rao, P.V., Ramkumar, J. and Gupta, M. (2010). The effect of process parameters on machining of magnesium nano alumina composites through EDM. International Journal of Advanced Manufacturing Technology, 46(9–12), 1035–1042. DOI: 10.1007/S00170-009-2158-9/METRICS.
  • Porwal, R.K., Yadava, V. and Ramkumar, J. (2012). Artificial neural network modelling and multi-objective optimization of hole drilling electro discharge micromachining of invar. International Journal of Mechatronics and Manufacturing Systems, 5(5–6), 470–494. DOI: 10.1504/IJMMS.2012.049974.
  • Ramaswamy, A. and Perumal, A.V. (2020). Multiobjective optimization of drilling EDM process parameters of LM13 Al alloy–10ZrB2–5TiC hybrid composite using RSM. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8), 1–18. DOI: 10.1007/S40430-020-02518-9/METRICS.
  • Rao, P.S., Ramji, K., & Satyanarayana, B. (2014). Experimental Investigation and Optimization of Wire EDM Parameters for Surface Roughness, MRR and White Layer in Machining of Aluminium Alloy. Procedia Materials Science, 5, 2197–2206, Jan. 2014. DOI: 10.1016/J.MSPRO.2014.07.426.
  • Sabry, I., El-Kassas, A.M., Mourad, A.-H.I., Thekkuden, D.T. and Qudeiri, Ja.A. (2019). Friction Stir Welding of T-Joints: Experimental and Statistical Analysis. Journal of Manufacturing and Materials Processing, 3(38), 1–23.
  • Sabry, I., Mourad, A.H.I. and Thekkuden, D.T. (2020). Optimization of metal inert gas-welded aluminium 6061 pipe parameters using analysis of variance and grey relational analysis. SN Appl Sci, 2(2), 1–11, Feb. 2020. DOI: 10.1007/S42452-020-1943-9/FIGURES/8.
  • Sabry, I. Idrisi, A.H. Mourad, A.-H.I. Sabry, I. Idrisi, A.H. and Mourad, A.-H.I. (2021a). Friction Stir Welding Process Parameters Optimization Through Hybrid Multi-Criteria Decision-Making Approach. International Review on Modelling and Simulations (IREMOS), 14(1), 32–43. DOI: 10.15866/IREMOS.V14I1.19537.
  • Sabry, I. (2021b). Experimental and statistical analysis of possibility sources – rotation speed, clamping torque and clamping pith for quality assessment in friction stir welding. Management and Production Engineering Review, 12(3), 84–96. DOI: 10.24425/MPER.2021.138533.
  • Sabry, I., Thekkuden, T., Mourad, D., and Husain Khan, S. (2022a). Optimization of Tungsten Inert Gas Welding Parameters using Grey Relational Analysis for joining AA 6082 Pipes. 2022 Advances in Science and Engineering Technology International Conferences, ASET 2022. DOI: 10.1109/ASET53988.2022.9735100.
  • Sabry I., Thekkuden, D.T. and Mourad, A.H.I. (2022b). TOPSIS – GRA Approach to Optimize Friction Stir Welded Aluminum 6061 Pipes Parameters. Advances in Science and Engineering Technology International Conferences, ASET 2022. DOI: 10.1109/ASET53988.2022.9734821.
  • Sabry I. and Hewidy, A.M. (2023). Multi-Weld Quality Optimization of Gas Tungsten Arc Welding for Aluminium 6061 using the Grey Relation Analysis-Based Taguchi Method. Journal of Advanced Research in Applied Sciences and Engineering Technology, 36(1), 26–42. DOI: 10.37934/ARASET.36.1.2642.
  • Sabry, I. Hewidy, A.M. Alkhedher, M. and Mourad, A.H.I. (2024b). Analysis of variance and grey relational analysis application methods for the selection and optimization problem in 6061-T6 flange friction stir welding process parameters. International Journal of Lightweight Materials and Manufacture, 7(6), 773–792. DOI: 10.1016/J.IJLMM.2024.06.006.
  • Sabry, I. Hewidy, A.M. Naseri, M. and Mourad, A.H.I. (2024c). Optimization of process parameters of metal inert gas welding process on aluminium alloy 6063 pipes using Taguchi-TOPSIS approach. Journal of Alloys and Metallurgical Systems, 7, 100085. DOI: 10.1016/J.JALMES.2024.100085.
  • Shivakoti, I., Kibria, G., Diyaley, S. and Pradhan, B.B. (2013). Multi-objective optimization and analysis of electrical discharge machining process during micro-hole machining of D3 die steel employing salt mixed de-ionized water dielectric. Journal of Computational & Applied Research in Mechanical Engineering (JCARME), 3(1), 27–39. DOI: 10.22061/ JCARME.2013.57.
  • Szałek, A. Szukiewicz, M. and Chmiel-Szukiewicz, E. (2021). Kinetic investigations of heterogeneous reactor processes – Optimization of experiments. Chemical and Process Engineering – Inzynieria Chemiczna i Procesowa, 42(1), 35–41. DOI: 10.24425/CPE.2021.137337.
  • Tamang, S.K. Natarajan, N. and Chandrasekaran, M. (2017). Optimization of EDM process in machining micro holes for improvement of hole quality. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(4), 1277–1287. DOI: 10.1007/S40430-016-0630-7/METRICS.
  • Ţîţu, A.M., Pop, A.B. and Nabiałek, M. (2023). Modelling the natural gas transportation process using the factorial experiment method. Archives of Metallurgy and Materials, 68(3), 961–966. DOI: 10.24425/AMM.2023.145460.
  • Tiwary, A.P., Pradhan, B.B. and Bhattacharyya, B. (2014). Application of multi-criteria decision-making methods for selection of micro-EDM process parameters. Adv Manuf, 2(3), 251–258. DOI: 10.1007/S40436-013-0050-1/TABLES/10.
  • Wrzecionek, M. Howis, J. Marek, P.H. Ruśkowski, P. and Gadomska-Gajadhur, A. (2021). The catalyst-free polytransesterification for obtaining linear PGS optimized with use of 22 factorial design. Chemical and Process Engineering – Inzynieria Chemiczna i Procesowa, 42(1), 43–52, 2021. DOI: 10.24425/CPE.2021.137338.
  • Yan, B.H., Wang, C.C., Liu, W.D., & Huang, F.Y. (2000). Machining characteristics of Al2O3/6061Al composite using rotary EDM with a disklike electrode. International Journal of Advanced Manufacturing Technology, 16(5), 322–333. DOI: 10.1007/S001700050164/METRICS.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6ad513d-907c-42fc-a04d-d86e939ecbfa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.