PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural and optical properties of aluminium nitride thin films fabricated using pulsed laser deposition and dc magnetron sputtering on various substrates

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminium nitride thin films were fabricated using pulsed laser deposition and DC magnetron sputtering. Different technological parameters and the effects of different substrates on the optical and structural parameters of AlN samples were studied. An X-ray diffraction study was performed for the layer deposited on the Si3N4 substrate. A high-energy electron diffraction study was also carried out for the layer deposited on a KCl substrate. Transmission spectra of layers on quartz, sapphire, and glass substrates were obtained. An evaluation of the optical band gap of the obtained layers was carried out (Eg form 3.81 to 5.81 eV) and the refractive index was calculated (2.58). The relative density of the film (N1TN-AlN sample) is 1.26 and was calculated using the Lorentz-Lorentz relationship. Layers of aluminium nitride show an amorphous character with a polycrystalline region. It was shown that the properties of AlN films strongly depend on the method, growth conditions, and substrate used.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
  • Drohobych State Pedagogical University, Drohobych, Ukraine
autor
  • Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Poland
  • Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Poland
  • Institute of Physics, College of Natural Sciences, University of Rzeszow, Poland
  • Institute of Materials Engineering, College of Natural Sciences, University of Rzeszow, Poland
  • Lviv Polytechnic National University, Lviv, Ukraine
  • Lviv Polytechnic National University, Lviv, Ukraine
Bibliografia
  • 1. Li, N.; Ho, C.P.; Zhu, S.; Fu, Y.H.; Zhu, Y.; Lee, L.Y.T. Aluminium nitride integrated photonics: A review. Nanophotonics 2021, 10, 2347–2387, doi:10.1515/nanoph-2021-0130.
  • 2. Cunha, C.L., Pimenta, T.C., Fraga, M.A. Amorim Fraga, M. Development and Applications of Aluminum Nitride Thin Film Technology. In Thin Films - Deposition Methods and Applications; IntechOpen 2023, doi:10.5772/intechopen.106288.
  • 3. Thapa, R.; Saha, B.; Chattopadhyay, K.K. Enhanced field emission from Si doped nanocrystalline AlN thin films. Applied Surface Science 2009, 255, 4536–4541, doi:10.1016/j.apsusc.2008.11.063.
  • 4. García-Méndez, M.; Morales-Rodríguez, S.; Machorro, R.; De La Cruz, W. Characterization of ALN thin films deposited by DC reactive magnetron sputtering. Revista Mexicana de Fisica 2008, 54, 271–278.
  • 5. Baker, T.; Mayo, A.; Veisi, Z.; Lu, P.; Schmitt, J. Hydride vapor phase epitaxy of AlN using a high temperature hot-wall reactor. In Proceedings of the Journal of Crystal Growth; North-Holland 2014; Vol. 403, pp. 29–31.
  • 6. Wu, S.; Xu, R.; Guo, B.; Ma, Y.; Yu, D. Influence of growth parameters and systematical analysis on 8-inch piezoelectric AlN thin films by magnetron sputtering. Materials Science in Semiconductor Processing 2024, 169, 107895, doi:10.1016/j.mssp.2023.107895.
  • 7. Tholander, C.; Tasnádi, F.; Abrikosov, I.A.; Hultman, L.; Birch, J.; Alling, B. Large piezoelectric response of quarternary wurtzite nitride alloys and its physical origin from first principles. Physical Review B - Condensed Matter and Materials Physics 2015, 92, 174119, doi:10.1103/physrevb.92.174119/figures/3/medium.
  • 8. Besleaga, C.; Dumitru, V.; Trinca, L.M.; Popa, A.C.; Negrila, C.C.; Kołodziejczyk, Ł.; Luculescu, C.R.; Ionescu, G.C.; Ripeanu, R.G.; Vladescu, A. et al. Mechanical, corrosion and biological properties of room-temperature sputtered aluminum nitride films with dissimilar nanostructure. Nanomaterials 2017, 7, 394, doi:10.3390/nano7110394.
  • 9. Wu, H.; Fu, X.; Wang, Y.; Guo, J.; Shen, J.; Hu, S. Breakdown voltage improvement of enhancement mode AlGaN/GaN HEMT by a novel step-etched GaN buffer structure. Results in Physics 2021, 29, 104768, doi:10.1016/j.rinp.2021.104768.
  • 10. Viswanathan, E.; Sundareswari, M.; Krishnaveni, S.; Manjula, M.; Jayalakshmi, D.S. Theoretical Investigation on Effect of Boron on Improving the Hardness of Zincblende-Aluminium Nitride and Its Mechanical, Thermal and Thermoelectric Properties. Journal of Superhard Materials 2019, 41, 321–333, doi:10.3103/S1063457619050046.
  • 11. Gillinger, M.; Schneider, M.; Bittner, A.; Nicolay, P.; Schmid, U. Impact of annealing temperature on the mechanical and electrical properties of sputtered aluminum nitride thin films. Journal of Applied Physics 2015, 117, 65303, doi:10.1063/1.4907208.
  • 12. Cheng, Z.; Koh, Y.R.; Mamun, A.; Shi, J.; Bai, T.; Huynh, K.; Yates, L.; Liu, Z.; Li, R.; Lee, E.; et al. Experimental observation of high intrinsic thermal conductivity of AlN. Physical Review Materials 2020, 4, 044602, doi:10.1103/PhysRevMaterials.4.044602.
  • 13. Galca, A.C.; Stan, G.E.; Trinca, L.M.; Negrila, C.C.; Nistor, L.C. Structural and optical properties of c-axis oriented aluminum nitride thin films prepared at low temperature by reactive radio-frequency magnetron sputtering. Thin Solid Films 2012, 524, 328–333, doi:10.1016/j.tsf.2012.10.015.
  • 14. Zou, Y.; Zhang, Y.; Hu, Y.; Gu, H. Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review. Sensors (Switzerland) 2018, 18, 2072.
  • 15. Li, J.; Fan, Z.Y.; Dahal, R.; Nakarmi, M.L.; Lin, J.Y.; Jiang, H.X. 200 nm deep ultraviolet photodetectors based on AlN. Applied Physics Letters 2006, 89, 213510, doi:10.1063/1.2397021.
  • 16. Shu, L.; Peng, B.; Li, C.; Gong, D.; Yang, Z.; Liu, X.; Zhang, W. The characterization of surface acoustic wave devices based on AlN-metal structures. Sensors (Switzerland) 2016, 16, 526, doi:10.3390/s16040526.
  • 17. Liu, X.; Bruch, A.W.; Gong, Z.; Lu, J.; Surya, J.B.; Zhang, L.; Wang, J.; Yan, J.; Tang, H.X. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica 2018, 5, 1279, doi:10.1364/optica.5.001279.
  • 18. Hiroki, M.; Taniyasu, Y.; Kumakura, K. High-Temperature Performance of AlN MESFETs with Epitaxially Grown n-Type AlN Channel Layers. IEEE Electron Device Letters 2022, 43, 350–353, doi:10.1109/LED.2022.3141100.
  • 19. Jiang, W.; Chen, J.; Liu, X.; Niu, Z.; Liu, K.; Peng, W.; Wang, Z.; Lin, Z.R. Thin film aluminum nitride surface acoustic wave resonators for quantum acoustodynamics. Applied Physics Letters 2023, 123, 24002, doi:10.1063/5.0158083.
  • 20. Rey-Mermet, S.; Lanz, R.; Muralt, P. AlN thin film resonators operating at 8 GHz used as sensors for organic films. In Proceedings of the Proceedings - IEEE Ultrasonics Symposium 2005, 2, 1253–1257.
  • 21. Krugel, G.; Jenkner, F.; Moldovan, A.; Wolke, W.; Rentsch, J.; Preu, R. Investigations on the passivation mechanism of AlN:H and AlN:H-SiN:H stacks. In Proceedings of the Energy Procedia; Elsevier 2014, 55, 797–804.
  • 22. Lee, M.S.; Wu, S.; Jhong, S. Bin; Chen, K.H.; Liu, K.T. Memory and electrical properties of (100)-oriented AlN thin films prepared by radio frequency magnetron sputtering. Journal of Nanomaterials 2014, 2014, 250439, doi:10.1155/2014/250439.
  • 23. Xie, F.; Gu, Y.; Hu, Z.; Yu, B.; Yang, G. Ultra-low dark current back-illuminated AlGaN-based solar-blind ultraviolet photodetectors with broad spectral response. Optics Express 2022, 30, 23756, doi:10.1364/OE.461169.
  • 24. Yang, M.; Chong, M.; Zhao, D.; Wang, X.; Su, Y.; Sun, J.; Sun, X. Back-illuminated AlxGa1-xN-based dual-band solar-blind ultraviolet photodetectors. Journal of Semiconductors 2014, 35, 064008, doi:10.1088/1674-4926/35/6/064008.
  • 25. Haider, S.T.; Shah, M.A.; Lee, D.-G.; Hur, S. A Review of the Recent Applications of Aluminum Nitride-Based Piezoelectric Devices. IEEE Access 2023, 11, 58779–58795, doi:10.1109/ACCESS.2023.3276716.
  • 26. Davis, R.F. III-V Nitrides for Electronic and Optoelectronic Applications. Proceedings IEEE 1991, 79, 702–712, doi:10.1109/5.90133.
  • 27. Griffin, B.A.; Habermehl, S.D.; Clews, P.J. High Temperature Microelectromechanical Systems Using Piezoelectric Aluminum Nitride. Additional Conferences (Device Packag. HiTEC, HiTEN, CICMT) 2014, 2014, 000040–000046, doi:10.4071/HITEC-TA24.
  • 28. Kudyakova, V.S.; Shishkin, R.A.; Elagin, A.A.; Baranov, M.V.; Beketov, A.R. Aluminium nitride cubic modifications synthesis methods and its features. Review. Journal of Europenian Ceramics Society 2017, 37, 1143–1156, doi:10.1016/j.jeurceramsoc.2016.11.051.
  • 29. Iqbal, A.; Mohd-Yasin, F. Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review. Sensors 2018, 18, 1797, doi:10.3390/s18061797.
  • 30. Aissa, K.A.; Achour, A.; Elmazria, O.; Simon, Q.; Elhosni, M.; Boulet, P.; Robert, S.; Djouadi, M.A. AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering for SAW applications. Journal of Physics D. Applied Physics 2015, 48, 145307, doi:10.1088/0022-3727/48/14/145307.
  • 31. Hasheminiasari, M.; Lin, J. Seed layer effect on the (0 0 2) texture and piezoelectric properties of pulsed-DC sputtered AlN thin films. Advances in Materials and Processing Technologies 2016, 2, 66–72, doi:10.1080/2374068X.2016.1159027.
  • 32. Yin, J.; Chen, D.; Yang, H.; Liu, Y.; Talwar, D.N.; He, T.; Ferguson, I.T.; He, K.; Wan, L.; Feng, Z.C. Comparative spectroscopic studies of MOCVD grown AlN films on Al2O3 and 6H–SiC. Journal of Alloys and Compounds 2021, 857, 157487, doi:10.1016/j.jallcom.2020.157487.
  • 33. Faria, F.A.; Nomoto, K.; Hu, Z.; Rouvimov, S.; Xing, H.; Jena, D. Low temperature AlN growth by MBE and its application in HEMTs. Journal of Crystal Growth 2015, 425, 133–137, doi:10.1016/j.jcrysgro.2015.03.039.
  • 34. Ristoscu, C.; Ducu, C.; Socol, G.; Craciunoiu, F.; Mihailescu, I.N. Structural and optical characterization of AlN films grown by pulsed laser deposition. In Proceedings of the Applied Surface Science; North-Holland 2005, 248, 411–415.
  • 35. Hua, T.S.; Zhu, B.; Song, R.G. Characterisation of AlN nano thin films prepared by PLD. Surface Engineering 2020, 36, 55–62, doi:10.1080/02670844.2018.1564476.
  • 36. Kolaklieva, L.; Chitanov, V.; Szekeres, A.; Antonova, K.; Terziyska, P.; Fogarassy, Z.; Petrik, P.; Mihailescu, I.N.; Duta, L. Pulsed laser deposition of aluminum nitride films: Correlation between mechanical, optical, and structural properties. Coatings 2019, 9, 195, doi:10.3390/COATINGS9030195.
  • 37. Dhunna, R.; Lal, C.; Sisodia, V.; Avasthi, D.K.; Ganesan, V.; Jain, I.P. Structural and optical properties of AlN/Si system. Materials Science in Semiconductor Processing 2008, 11, 126–130, doi:10.1016/j.mssp.2009.05.003.
  • 38. Chen, H.Y.; Han, S.; Shih, H.C. The characterization of aluminum nitride thin films prepared by dual ion beam sputtering. Surface and Coatings Technology 2006, 200, 3326–3329, doi:10.1016/j.surfcoat.2005.07.046.
  • 39. Shahien, M. Reactive Plasma Spray. In Production, Properties, and Applications of High Temperature Coatings; IGI Global 2018; pp. 299–332 ISBN 9781522541950.
  • 40. Basillais, A.; Benzerga, R.; Sanchez, H.; Lemenn, E.; Boulmer-Leborgne, C.; Perrière, J. Improvement of the PLD process assisted by RF plasma for AlN growth. Applied Physics A Materials Science and Processing 2005, 80, 851–859, doi:10.1007/s00339-003-2325-z.
  • 41. Li, H.; Lu, X.; Li, X.; Zhang, J.; Hao, Y. High Quality Transferable AlN Thin Film by PLD. Journal of Physics: Conference Series 2017, 864, 012011, doi:10.1088/1742-6596/864/1/012011.
  • 42. Han, J.; Cui, B.; Xing, Y.; Li, T.; Zhao, J.; Cao, X.; Zhang, Y.; Zhang, B. Influence of nitrogen flow ratio on the optical property of AlN deposited by DC magnetron sputtering on Si (100) substrate. Micro and Nano Letters 2020, 15, 556–560, doi:10.1049/mnl.2019.0767.
  • 43. Jiang, X.; Wu, Y.; Qi, J.; Liu, Y.; Wang, Y.; Gao, J.; Hei, H.; Yu, S. Effect of nitrogen flow ratio on the structure and optical properties of AlN film. Vacuum 2024, 220, 112829, doi:10.1016/j.vacuum.2023.112829.
  • 44. Meng, W.J. Crystal structure, mechanical properies, thermal properties and refractive index of AlN. In Properties of Group III Nitrides; Edgar, J.H., Ed.; EMIS datareviews series ; no. 11; INSPEC, Institution of Electrical Engineers: London, 1994; Vol. 11, pp. 22–34.
  • 45. Cieniek, B.; Stefaniuk, I.; Virt, I. EMR spectra thin films doped with high concentration of Co and Cr on quartz and sapphire substrates. Acta Physica Polonica A 2017, 132, 30–33, doi:10.12693/APhysPolA.132.30.
  • 46. Cieniek, B.; Stefaniuk, I.; Virt, I. EPR study of ZnO:Co thin films grown by the PLD method. Nukleonika 2013, 58, 359–363.
  • 47. Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B Basic Research 2015, 252, 1700–1710, doi:10.1002/pssb.201552007.
  • 48. Kar, J.P.; Bose, G.; Tuli, S. Effect of annealing on DC sputtered aluminum nitride films. Surface and Coatings Technology 2005, 198, 64–67, doi:10.1016/j.surfcoat.2004.10.074.
  • 49. Taha, W.A.; Ahmed, Z.S.; Aljawad, S.M.H. Optical Properties of Annealed Cadmium Sulfide Thin Films Prepared by Chemical Bath Deposition. Iraqi Journal of Applied Physics Letters 2009, 2, 19–22.
  • 50. Venkataraj, S.; Severin, D.; Drese, R.; Koerfer, F.; Wuttig, M. Structural, optical and mechanical properties of aluminium nitride films prepared by reactive DC magnetron sputtering. Thin Solid Films 2006, 502, 235–239, doi:10.1016/j.tsf.2005.07.281.
  • 51. Mednikarov, B.; Spasov, G.; Babeva, T. Aluminum nitride layers prepared by DC/RF magnetron sputtering. In Proceedings of the Journal of Optoelectronics and Advanced Materials 2005, 7, 1421–1427.
  • 52. Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.; Sathe, V.; Ganesan, V. Physical properties of electron beam evaporated CdTe and CdTe:Cu thin films. Journal of Applied Physics 2014, 116, 213502, doi:10.1063/1.4903320.
  • 53. Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E: Scientifics Instruments 1983, 16, 1214–1222, doi:10.1088/0022-3735/16/12/023.
  • 54. Giba, A.E.; Pigeat, P.; Bruyère, S.; Easwarakhanthan, T.; Mücklich, F.; Horwat, D. Controlling refractive index in AlN films by texture and crystallinity manipulation. Thin Solid Films 2017, 636, 537–545, doi:10.1016/j.tsf.2017.06.057.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6ab882d-d039-432b-8a01-7607ef99d274
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.