PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution of the modified time fractional coupled burgers equations using laplace adomian decompostion method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a coupled system of time-fractional modified Burgers’ equations is considered. Three different fractional operators: Caputo, Caputo-Fabrizio and Atangana-Baleanu operators are implemented for the equations. Also, two different scenarios are examined for each fractional operator: when the initial conditions are u(x,y,0) = sin(xy), v(x,y,0) = sin(xy), and when they are u(x,y,0) = e{−kxy}, v(x,y,0) = e{−kxy}, where k,α are some positive constants. With the aid of computable Adomian polynomials, the solutions are obtained using Laplace Adomian decomposition method (LADM). The method does not need linearization, weak nonlinearity assumptions or perturbation theory. Simulations are also presented to support theoretical results, and the behaviour of the solutions under the three different fractional operators compared.
Rocznik
Strony
124--132
Opis fizyczny
Bibliogr. 19 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Federal University of Technology, 1526, PMB,Owerri, Ihiagwa, Nigeria
  • Abdus Salam School of Mathematical Sciences, Government College University Katchery Road, Lahore 54000, Lahore Pakistan
  • Abdus Salam School of Mathematical Sciences, Government College University Katchery Road, Lahore 54000, Lahore Pakistan
Bibliografia
  • 1. Caputo M. Linear models of dissipation whose Q is almost frequency independent, Annals of Geophysics 196;19(4):383-393.
  • 2. Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applica-tions 2015;1(2):1-3.
  • 3. Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and applications to heat transfer model, Therm Sci. 2016;20(2):763-769.
  • 4. Li L, Li D. Exact solutions and numerical study of time fractional Burgersequations,Applied Mathematics Letters, 2020;100:106011 https://doi.org/10.1016/j.aml.2019.106011.
  • 5. Agheli B, Darzi R. Analysis of solution for system of nonlinear frac-tional Burger differential equations based on multiple fractional power series, Alexandria Engineering Journal, 2017;56(2):271-276, https://doi.org/10.1016/j.aej.2016.12.021.
  • 6. Kaya D. An explicit solution of coupled viscous Burgers equation by the decomposition method, International Journal of Mathematics and Mathematical Sciences, 2001;27:802356. https://doi.org/10.1155/S0161171201010249.
  • 7. Majeed A, Kamran M, Iqbal MK. Baleanu D. Solving time fractional Burgers and Fisher's equations using cubic B-spline approximation method. Adv Differ Equ 2020;175. https://doi.org/10.1186/s13662-020-02619-8.
  • 8. Singh J, Kumar D, Qurashi MA, Baleanu D. Analysis of a New Frac-tional Model for Damped Bergers' Equation, Open Physics, 2017;15(1):35-41. https://doi.org/10.1515/phys-2017-0005.
  • 9. Esen A, Yagmurlu NM, Tasbozan O. Approximate Analytical Solution to Time- Fractional Damped Burger and Cahn- AllenEquations, Appl. Math. Inf. Sci., 2013;7(5):1951-1956.
  • 10. Alsaedi A, Baleanu D, Etemad S, Rezapour S. On coupled systems of time-fractional differential problems by using a newfractional deriv-ative, Journal of Function Spaces, 2016:4626940, https://doi.org/10.1155/2016/4626940.
  • 11. Safari F, Chen W. Numerical approximations for space-time fraction-al Burgers equations via a new semi-analytical method, Comput Math Appl, 2021;96:55-66, https://doi.org/10.1016/j.camwa.2021.03.026.
  • 12. Safari F, Sun H. Improved singular boundary method and dual reci-procity method for fractional derivative Rayleigh-Stokes problem. En-grg Comput 2021;37:3151-3166 . https://doi.org/10.1007/s00366-020-00991-3.
  • 13. Safari F, Chen W. Coupling of the improved singular boundary method and dual reciprocity method for multi-term time-fractional mixed diffusion-wave equations, Comp Math Appl, 2019;78(5):1594-1607, https://doi.org/10.1016/j.camwa.2019.02.001.
  • 14. Safari F, Jing L, Lu J, Chen W. A meshless method to solve the variable-order fractional diffusion problems with fourth-order deriva-tive term, Engrg Anal Bound Elem, 2022;143:677-686, https://doi.org/10.1016/j.enganabound.2022.07.012.
  • 15. Jafari H, Khalique CM, Nazari M. Application of the Laplace decom-position method for solving linearand nonlinear fractional diffusion-wave equations. Appl. Math. Lett. 2011;24:1799-1805.
  • 16. Carpinteri A, Mainardi F. Fractals and Fractional Calculus in conti-num mechanics, Springer-Verlag Wien GmbH, 1997.
  • 17. Mohamed ZM, Hamza AE, Sedeeg AKH. Conformable double Su-mudu transformations an efficient approximation solutions to the frac-tional coupled Burgers equation, Ain Shams Engineering Journal, 2022:101879,https://doi.org/10.1016/j.asej.2022.101879.
  • 18. Mohamed ZM, Yousif M, Hamza AE. Solving Nonlinear Fractional Partial Differential Equations Using the Elzaki Transform Method and the Homotopy Perturbation Method, Abstract and Applied Analysis, 2022:4743234, https://doi.org/10.1155/2022/4743234.
  • 19. Mohamed ZM, Elzaki TM, Algolam MS, Abd Elmohmoud EM, Hamza AE. New Modified Variational Iteration Laplace Transform Method Compares Laplace Adomian Decomposition Method for Solution Time-Partial Fractional Differential Equations, J. Appl. Math, 2021:6662645, https://doi.org/10.1155/2021/6662645.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6a6bfc9-4330-491d-b870-70e0bca32322
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.