
Data Locality in Hadoop
Justyna Kałużka, Małgorzata Napieralska, Oscar Romero, and Petar Jovanovic

Abstract—The Apache Hadoop framework is an answer to the
market tendencies regarding the need for storing and processing
rapidly growing amounts of data, providing a fault-tolerant
distributed storage and data processing. Dealing with large
volumes of data, Hadoop, and its storage system HDFS (Hadoop
Distributed File System), face challenges to keep the high effi-
ciency with computing in a reasonable time. The typical Hadoop
implementation transfers computation to the data. However, in
the isolated configuration, namenode (playing the role of a master
in the cluster) still favours the closer nodes. Basically it means
that before the whole task has run, significant delays can be
caused by moving single blocks of data closer to the starting
datanode. Currently, a Hadoop user does not have influence how
the data is distributed across the cluster. This paper presents an
innovative functionality to the Hadoop Distributed File System
(HDFS) that enables moving data blocks on request within the
cluster. Data can be shifted either by a user running the proper
HDFS shell command or programmatically by other modules,
like an appropriate scheduler.

Index Terms—Distributed File System, Big Data, Apache
Hadoop, HDFS

I. INTRODUCTION

DATA means terms and information - transferred and

processed for further calculations and analysis. Devel-

opment of modern technologies and digitalization of everyday

life cause the growing amount of data generated by people

but especially by computers. One can talk about the quantity

which was impossible to store and process even few years

ago, mainly because of the hardware limitations [1]. Therefore,

there is a need for creation and continuous development of

technologies which enable managing and analysing these large

data quantities. To describe this phenomenon the term Big
Data is currently used.

A. Big Data

Term Big Data typically refers to the large datasets of size

exceeding the storage ability of the typical relational databases

as for example in areas like as health care, business and

sciences. However, the definition changes amongst sectors

and with development of newer - more capable - tools and

technologies. The “5 V’s” concept typically enumerates the

following features [2]:

1) volume refers to the data quantity and its massive

growth in recent years;

J. Kałużka is with Skyscanner Ltd, Barcelona, Spain (e-mail:
justyna.kaluzka@skyscanner.net).

M. Napieralska is with the Department of Microelectronics and Computer
Science (DMCS), Lodz University of Technology, Łódź, Poland (e-mail:
mnapier@dmcs.pl).

O. Romero and P. Jovanovic are with the Departament d’Enginyeria de
Serveis i Sistemes d’Informació (ESSI), Universitat Politècnica de Catalunya,
Barcelona, Spain (e-mails: {oromero, petar}@essi.upc.edu).

2) velocity is related with the speed at which data is

generated but also the increasing velocity in which data

streams are arriving for processing;

3) variety describes the lack of a common unified structure

for modelling the data;

4) veracity refers to the relatively poor quality of stored

data due to its inconsistency and incompleteness;

5) value i.e. usefulness of collected information and ability

to turn it into desired worth [3], [4].

The natural consequence of market tendencies is that the

top technological companies and research institutions are

continuously working on solutions how to meet requirements

of storing the big volumes of data and processing them in

reasonable time to maximize the benefit.

B. Apache Hadoop

Milestone in this Big Data research was set by an open-

source software framework called Apache Hadoop, which

enabled the distribution of storage and data processing across

the computers cluster - set of the connected machines, also

called nodes. Files are divided into smaller parts (chunks,

blocks) and can be replicated on more than one machine for

providing more reliable and fault-tolerant data processing. One

of the Hadoop’s principles states that “Moving Computation is

Cheaper than Moving Data”, meaning that it is more efficient

to execute tasks close to the node with needed data rather than

moving the data itself, especially in case of huge blocks [5].

Hadoop is a free and fully open-source framework under

the license of Apache Software Foundation, i.e., available to

be modified and enhanced by anyone. The Apache projects are

identified as developed in collaborative process by volunteers

(often referred as the open-source community) and with open

and pragmatic software license. Open source community is

very varied but usually and by default helpful, and open

to the new contributions. Information about Hadoop and its

components is always free and available online - not only

documentation but also numerous tutorials, scientific papers

and other studies.

Although Hadoop is an effective way to store and process

huge amounts of data in a reasonable time, it obviously has

some bottlenecks. One of them refers to so called data locality.

After a new task from a user is recognized by the system, it

is processed and system recognizes which of data blocks are

needed for that task. By default, the local data access is favored

over this from the remote nodes.

Although one of the Hadoops basic concepts is to move

computation to data, framework handles data shipping with

its built-in scheduler. Blocks of data are transferred just before

they are needed. An alternative way, which would significantly

increase the system performance, is to transfer data in-advance.



Moving data blocks between nodes would enable studies

on more advanced scheduling algorithms. In-advance data

shipping could allow a user to manually relocate data, rather

than rely on default arrangement, and take advantage later

from its locality. Currently, Hadoop automatically organizes

blocks across cluster without the user interference. Therefore

designing and developing functionality of forced or instructed

replication, is very challenging and innovative [6].

II. APACHE HADOOP ARCHITECTURE

The first official release of Apache Hadoop framework was

presented in December 2011 and it consisted of so called Two

Pillars of Hadoop 1.x - file storage HDFS and MapReduce on

top of it. It considerably popularized MapReduce concept and

presented the potential of distributed data processing.

From the architectural point of view, Hadoop uses a mas-

ter/slave architecture, where one device has control over

others. Both in MapReduce and HDFS components one can

distinguish masters and slaves (Fig. 1) [7], [8].

Fig. 1. Hadoop master/slave architecture [7]

With switching to the next major release, Hadoops primary

components were re-written to add new functionalities. Fig.

2 presents architecture changes between Hadoop 1 and 2.

The main difference was dividing MapReduce functionalities

and decoupling separate module YARN, which took respon-

sibility for managing resources. Also HDFS architecture was

slightly improved. These changes eliminated such limitations

of Hadoop 1 like problems with horizontal scalability and

cluster restrictions (only 4000 nodes) [5].

Fig. 2. Hadoop 1 vs Hadoop 2 architecture [9]

Following paragraphs describe the main components of

Apache Hadoop architecture.

A. MapReduce

MapReduce is the programming paradigm enabling the

massive scalability across the cluster nodes. Developers can

write applications to process big amounts of raw data on large

clusters with a parallel, distributed algorithm that improves

speed and reliability of the system. Although the Apache

Hadoop project is just one of the MapReduce implementations,

MapReduce plays the key role in the framework. The whole

concept assumes the same data flow and stages since its

introduction in 2004 [10].

MapReduce algorithm consists of two stages. Jobs submit-

ted to the cluster are called also respectively map and reduce

tasks [11].

• Map stage
Input data is read from data storage and divided into

blocks. Each block is processed by a map task, line by

line. Then the map function submitted by a user generates

the output data (in form of key-value pairs). Intermediate

data collected in buffer is sorted, written to local disk as

many file spills and merged into a single map output file.

• Reduce stage
After transferring data to the proper node, outputs of

different mappers are grouped by the previously defined

key. User reduce function produces the final data which

is later compressed and written as output to HDFS.

MapReduce is widely popular because of its scalability, allow-

ing processing huge amount of data stored in one cluster and

being relatively easy to use - developers can write applications

in any of popular programming languages (like Java, Python,

or Ruby) to run them them as the MapReduce jobs.

B. YARN

Apache Hadoop YARN (Yet Another Resource Negotiator)

was introduced with Hadoop 2 and took some of the MapRe-

duce functionalities. This cluster management technology can

be described as a large-scale, distributed operating system used

in Apache Hadoop framework that separates resources and

scheduling management from the data processing part.

In Hadoop 1 JobTracker in MapReduce was responsible

for resource management, tracking resources consumption

and job life-cycle management. Therefore the fundamental

idea of YARN is based on splitting these functionalities into

global ResourceManager (responsible for resources) and per-

application ApplicationMaster (job scheduling/monitoring).

The main ResourceMananger and per-node slave NodeMan-

ager are aimed to manage resources for executing applications

in a distributed manner. The per-application ApplicationMaster

negotiates resources with the ResourceManager and collabo-

rates with NodeManager in order to execute and monitor the

tasks.

The ResourceManager is responsible for handling all avail-

able cluster resources among applications using two com-

ponents - Scheduler and ApplicationsManager. The first one



allocates resources based on the applications needs but without

monitoring, tracking status or restarting the failed tasks; the

latter - accepts job-submissions directing them to the specific

per-application ApplicationMasters. The per-machine NodeM-

anagers are responsible for monitoring their resources usage,

tracking and reporting this information to the ResourceMan-

ager [5], [12].

C. HDFS

Hadoop Distributed File System is the primary distributed

storage used in Hadoop - scalable and reliable, designed

especially for large clusters of commodity servers, aiming to

be fault-tolerant and running on low-cost hardware [5].

Fig. 3. HDFS architecture [5]

Cluster with the deployed HDFS consists of one main

NameNode and DataNodes in the master-slave architecture -

Fig. 3. Machine containing NameNode behaves as a master

server. A single NameNode is responsible for managing the

file system namespace and regulating users access to files.

Also, it performs the typical file system operations on stored

files (like copying, moving).

Every node in a cluster has (typically one) DataNode

responsible for its data storage, where files divided into one

or more blocks are kept. They perform reading and writing

requests as well as the operations on blocks ordered by

NameNode.

Apart from the typical distributed file system features,

HDFS is designed and developed to fulfil high efficiency

goals by enabling parallel read and write operations. Hardware

failure is not treated as exception but rather as a norm. Blocks

are by default stored in more than one node in order to

be easily recovered in case of the partial breakdown. Also,

possible faults are monitored and quickly detected, so that

nodes can be recovered [13].

III. IMPLEMENTATION OF NEW FUNCTIONALITIES

During studies on the Apache Hadoop framework, there

appeared different approaches how to solve the problem of

in-advance data shipping. The ideal way, according to the

reusability principle, was to take an advantage of the existing

code and reuse it by adding the new modules. It aimed to

identify parts of source code where the necessary changes

should be made to provide the desired solution but also to

make it reusable later for the further improvements [5].

The desire plan was that the new module could be invoked

by the thrid-party components. In addition, the Hadoop user

should have a possibility to manually call the desired in-

advance data shipping functionality.

After trying different approaches to connect this with mod-

ules moving blocks, the best one was to add a new custom

functionality. Its role would be to directly access blocks of data

and be able to stream data to the specific data nodes. Although

the data streaming is present in many parts of the Hadoop

framework, the useful classes were Processor and Dispatcher

(Fig. 4) which can access the single blocks of data.

Fig. 4. Mover class diagram

In this stage, the new module was designed to be executed

by a user from the command line. The architecture presented

on Fig. 5 contains all classes used in the implementation.

White boxes indicate which classes were already existing in

Hadoop source code and altered by adding new methods while

yellow boxes represent newly added classes.

Fig. 5. ForceReplication architecture diagram



The main logic behind the new functionality of instructed

data shipping is included in the class ForcedMover. Class

ForceReplication is the one directly interacting with a

user while changes in Processor (inner class of Mover)

and Dispatcher make it possible to execute the actual data

shipping. Name force replication is explicitly used in this study

as in fact moving data can be defined as instructing (forcing)

replicas to be placed in a given datanode.
The whole process starts from a user who commands to

move blocks of data. Information, such as which block and

which datanodes are involved, is stored as an instance of

ForcedReplicationParams. On the diagram in Fig. 5

it is indicated as steps 1 and 2. Step 3 introduces the demand

of forced replication to the DistributedFileSystem
- implementation of FileSytstem which directly calls

ForcedMover (step 4). Later the Processor and

Dispatcher perform the actual data shipping.
The basic way a user can manage the cluster is through com-

mands executed on the namenode. These shell-like commands

directly interact with HDFS and allow a user to manipulate

files, analogously to the UNIX commands.
Main class supporting all commands operating on files is

FSCommand. Thus, also the class ForceReplication in-

voking the force replication extends it. FSCommand provides

common functions for all commands like operations on extra

parameters and checking whether the file exists.
In order to call the force replication, a user needs to use the

following command:
bin/hadoop -forceReplication <blockID>

<srcDatanode> <destDatanode> <path>
User has to determine the specific parameters:

• blockID - every block is defined by its parameters,

including ID

• srcDatanode - datanode where currently the block is

located

• dstDatanoce - datanode where block should be moved

All this information can be obtained from HDFS, e.g. using

the fsck command. In case a user tries to execute the

command forceReplication without proper parameters he gets

the appropriate warning.
ForceReplication uses instances of class

ForcedReplicationParams to store information

about blocks which should be transported throughout the

whole implementation. It contains also the basic validation

whether given path does not lead to the folder and verifying

checksum with built-in FileSystem method.
The implementation of the abstract general FileSystem

for DFS system is called DistributedFileSystem,

which is the way end-user interacts with Hadoop. At this point,

all information about blocks and nodes can be accessed in a

straightforward way. Connected to the instance of a namen-

ode, DistributedFileSystem has access to all storage

reports. Therefore, this step was chosen to execute the detailed

validation. Algorithm goes one by one through existing blocks

and datanodes and looks for ones indicated by user. If not

found, it stops the execution with the appropriate message. It

also checks whether source and destination datanodes are not

the same.

Class ForcedMover is the one where the planning

of the block movement is placed. It uses specific classes

LocatedBlock and DBlock to manage source data block

and design the new desired one. Similarly it uses MLocation
to point the proper datanodes instances and correct type of

storage (out of ARCHIVE, SSD, DISK and RAM DISK) for

Processor. Finally it can call the instance of Processor
and function scheduleMoveForcedReplica. In the end,

a user gets information about the current state in form of logs.

The last classes directly involved are the Processor,

subclass of the Mover class, and Dispatcher. Function

scheduleMoveForcedReplica inside the Processor
specifies the instance of StorageGroup (connection be-

tween datanodes and types of storage). Then the final move

can be determined and added to the queue. Finally, function

calls Dispatcher to execute the desired move. Inside the

Dispatcher class, a user is also informed about the result

of operation - moving a desired block between datanodes.

As indicated before, the desired result was a module which

can be a solid base for further enhancements which includes

various in-advance schedulers which automatically reallocate

data to benefit from the data locality approach in Hadoop.

It requires further studies on how to improve the efficiency

by reducing the latency and to improve the performance of

running applications. The main topic in this paper was to make

it possible to manually shift data across the cluster.

The outcome of these studies is the functionality allowing

Hadoop users to instruct movement of blocks between speci-

fied nodes in the cluster.

IV. CONCLUSIONS

The paper presents results of the Apache Hadoop framework

analysis for introducing the new functionalities in the Hadoop

Distributed File System. The proposed solution is elaborated

in more details together with its main advantages true to

the open source projects guidelines. The developed solution

allows user to freely redistribute data across the cluster and

make use of the data locality principles. Furthermore, the

developed module can simplify the further studies on more

advanced schedulers. Proposed functionality can be a good

basis for the future Hadoop enhancements. It would be enough

to connect it programmatically with any further modifications,

working with instructed redistribution of data. Example of

such improvements could be an advanced scheduler which

recognizes in advance which data blocks will be needed

while task is already running. In order to prevent HDFS from

transferring the following data blocks to the machine where

the computation occurs, scheduler would be responsible for

these movements. Studies showed that it could significantly

improve the built-in data locality solution and therefore, the

resource utilization and the whole system performance [14].

REFERENCES

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, “Big data: The next frontier for innovation, competition,
and productivity,” McKinsey Global Institute, Tech. Rep., June 2011.



[2] D. Laney, “3D data management: Controlling data volume, velocity,
and variety,” META Group, Tech. Rep., February 2001. [Online].
Available: http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-
Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

[3] K. Normandeau, “Beyond volume, variety and velocity is
the issue of big data veracity,” September 2013. [Online].
Available: http://insidebigdata.com/2013/09/12/beyond-volume-variety-
velocity-issue-big-data-veracity/

[4] B. Marr, “Why only one of the 5 vs of big data really matters,” March
2015. [Online]. Available: http://www.ibmbigdatahub.com/blog/why-
only-one-5-vs-big-data-really-matters

[5] Apache Software Foundation, “Apache hadoop.” [Online]. Available:
http://hadoop.apache.org/docs/current/

[6] P. Jovanovic, O. Romero, T. Calders, and A. Abellȯ, “H-word: Support-
ing job scheduling in hadoop with workload-driven data redistribution,”
2016.

[7] B. Hedlund, “Understanding hadoop clusters and
the network,” September 2011. [Online]. Available:
http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-
and-the-network/

[8] “Apache hadoop (mapreduce) internals - diagrams,”
http://ercoppa.github.io/HadoopInternals/.

[9] Hortonworks, Inc, “Hortonworks.” [Online]. Available:
https://hortonworks.com

[10] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[11] H. Herodotou, “Hadoop performance models,” CoRR, vol.
abs/1106.0940, 2011. [Online]. Available: http://arxiv.org/abs/1106.0940

[12] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha,
C. Curino, O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler,
“Apache hadoop YARN: yet another resource negotiator,” ACM
Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA,
USA, October 1-3, 2013, pp. 5:1–5:16, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633

[13] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” 2010, pp. 1–10. [Online]. Available:
http://dx.doi.org/10.1109/MSST.2010.5496972

[14] J. Kałużka, “Data locality in hadoop,” M.Sc. Thesis (Lodz University of
Technology, Universitat Politècnica de Catalunya), October 2016.

Justyna Kałużka received the BSc degree in
Telecommunications and Computer Science in 2014
at International Faculty of Engineering, Lodz Uni-
versity of Technology, Poland and BSc degree in
Informatics in 2016 (also TUL). As for the master
studies, she was working on her final project “Data
Locality in Hadoop” during studies exchange at
Universitat Politècnica de Catalunya and was entitled
with the MSc degree in Computer Science and Infor-
mation Technology at TUL in 2016. Since then she
has been working in industry (currently Skyscanner

Ltd) on the microservices-based cloud architecture.

Małgorzata Napieralska received the M.Sc. in
1982 from Technical University of Łódź (TUL), and
in 1991 Ph.D. in microelectronics from Institut Na-
tionale des Sciences Appliquées (INSA) de Toulouse
(France).
Currently she is with the Department of Microelec-
tronics and Computer Science, TUL. She is author
or co-author of over 140 scientific publications and
2 books. She participated in the preparation and
realization of 15 European research and educational
projects. She was a head of 2 interdisciplinary grants

of the Polish Committee of Scientific Research and participant of 11 others.
She is interested in VLSI design, modelling of semiconductor devices, as
well as interdisciplinary applications of Integrated Design, nanotechnology
and biometrics.

Oscar Romero received the BSc degree in Infor-
matics Engineering at Barcelona School of Infor-
matics (Universitat Politècnica de Catalunya, Spain)
in 2004. In 2010 he obtained the PhD degree in
Computing from the same university - his thesis was
entitled “Automating the Multidimensional Design
of Data Warehouses”. Currently he is working at the
Department of Service and Information System En-
gineering (UPC) while his main interest are business
intelligence, Big Data and the semantic web.

Petar Jovanovic graduated in Software Engineering
School of Electrical Engineering at University of
Belgrade, Serbia in 2010 and obtained the MSc
degree in Computing at Barcelona School of Infor-
matics (Universitat Politècnica de Catalunya, Spain).
During his PhD at UPC he was working on the prob-
lems of requirement-driven design and optimization
of data-intensive flows. In 2016 he obtained the
PhD title under the cotutelle between Universitat
Politècnica de Catalunya and Université Libre de
Bruxelles. His main research interests fall into the

business intelligence field.


