PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of metallic alloy particles on flat graphitic interfaces in arc discharge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The application of arc discharge to synthesising encapsulated (Fe-Cu-Al)@C structures is studied. The cost-effectiveness of the proposed technique may be beneficial for developing a new method for large-scale production of metal micro- and nanoparticles protected from oxidation by a carbon shell. Design/methodology/approach: A copper sample was immersed into a mixture of graphite, iron, and aluminium powder and placed into a negatively powered crucible of a setup designed to ignite arc discharge at atmospheric conditions. The proposed approach prevents the oxidation of droplets of Fe-Cu-Al alloy by covering them with a thin layer of carbon, which is also engaged as a collector of the metal particles. Findings: The application of arc discharge resulted in the generation of metal particles and various carbon nanostructures, which were confirmed by SEM images. The nanostructures were grouped into more complex flower-, ball-, tree-, and octopus-shaped structures with a large yield of metallic alloy particles ranging from a few μm (micrometers) to nanometre sizes. These findings suggest the catalytic application of the structures after the grown particles are cleared from the carbon shell to be implemented as active chemical agents. Research limitations/implications: The main limitation is the uncontrolled heat transfer from the discharge volume. Therefore, an additional screen should be installed around the volume in order to improve control over synthesis in future studies. Practical implications: This research confirms a flexible and simple method of synthesising metallic alloy particles that may be applied for catalytic applications. Originality/value: The synthesis is conducted using a well-known arc discharge technique to expand the production yield and diversity of chemically-active metal particles protected from oxidation by a shell before the intended application.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
autor
  • Plasma Laboratory, Faculty of Aircraft Engines, National Aerospace University, Kharkiv 61070, Ukraine
Bibliografia
  • 1. G. Machalska, M. Noworolnik, M. Szindler, W. Sitek, R. Babilas, Titanium dioxide nanoparticles and thin films deposited by an atomization method, Archives of Materials Science and Engineering 100/1-2 (2019) 34-41. DOI: https://doi.org/10.5604/01.3001.0013.6000
  • 2. A. Breus, S. Abashin, I. Lukashov, O. Serdiuk, Anodic growth of copper oxide nanostructures in glow discharge, Archives of Materials Science and Engineering 114/1 (2022) 24-33. DOI: https://doi.org/10.5604/01.3001.0015.9850
  • 3. K. Szmajnta, M.M. Szindler, M. Szindler, Synthesis and magnetic properties of Fe2O3 nanoparticles for hyperthermia application, Archives of Materials Science and Engineering 109/2 (2021) 80-85. DOI: https://doi.org/10.5604/01.3001.0015.2627
  • 4. M. Szindler, M.M Szindler, L.A. Dobrzański, T. Jung, NiO nanoparticles prepared by the sol-gel method for a dye sensitized solar cell applications, Archives of Materials Science and Engineering 92/1 (2018) 15-21. DOI: https://doi.org/10.5604/01.3001.0012.5507
  • 5. K. Loza, M. Heggen, M. Epple, Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals, Advanced Functional Materials 30/21 (2020) 1909260. DOI: https://doi.org/10.1002/adfm.201909260
  • 6. V. Ruzaikin, I. Lukashov, Experimental method of ammonia decomposition study based on thermal-hydraulic approach, Results in Engineering 15 (2022) 100600. DOI: https://doi.org/10.1016/j.rineng.2022.100600
  • 7. V. Ruzaikin, I. Lukashov, T. Fedorenko, S. Abashin, The equilibrium contact angle of ammonia-stainless steel interface, Results in Engineering 16 (2022) 100691. DOI: https://doi.org/10.1016/j.rineng.2022.100691
  • 8. W. Zhu, X. Dong, H. Huang, M. Qi, Iron nanoparticles-based magnetorheological fluids: A balance between MR effect and sedimentation stability, Journal of Magnetism and Magnetic Materials 491 (2019) 165556. DOI: https://doi.org/10.1016/j.jmmm.2019.165556
  • 9. M. Nasrollahzadeh, M. Sajjadi, H.A. Khonakdar, Synthesis and characterization of novel Cu(II) complex coated Fe3O4@SiO2 nanoparticles for catalytic performance, Journal of Molecular Structure 1161 (2018) 453-463. DOI: https://doi.org/10.1016/j.molstruc.2018.02.026
  • 10. H. Wu, D. Lan, B. Li, L. Zhang, Y. Fu, Y. Zhang, H. Xing, High-entropy alloy@air@Ni–NiO core-shell microspheres for electromagnetic absorption applications, Composites Part B: Engineering 179 (2019) 107524. DOI: https://doi.org/10.1016/j.compositesb.2019.107524
  • 11. O. Gnytko, A. Kuznetsova, Theoretical research of the chip removal process in milling of the closed profile slots, Archives of Materials Science and Engineering 113/2 (2022) 69-76. DOI: https://doi.org/10.5604/01.3001.0015.7019
  • 12. O. Shorinov, Finite element analysis of thermal stress in Cu2O coating synthesized on Cu substrate, Archives of Materials Science and Engineering 115/2 (2022) 58-65. DOI: https://doi.org/10.5604/01.3001.0016.0753
  • 13. J.M. Lee, R.C. Miller, L.J. Moloney, A.L. Prieto, The development of strategies for nanoparticle synthesis: Considerations for deepening understanding of inherently complex systems, Journal of Solid State Chemistry 273 (2019) 243-286. DOI: https://doi.org/10.1016/j.jssc.2018.12.053
  • 14. O. Baranov, M. Košiček, G. Filipič, U. Cvelbar, A deterministic approach to the thermal synthesis and growth of 1D metal oxide nanostructures, Applied Surface Science 566 (2021) 150619. DOI: https://doi.org/10.1016/j.apsusc.2021.150619
  • 15. A. Breus, S. Abashin, O. Serdiuk, Carbon nanostructure growth: new application of magnetron discharge, Journal of Achievements in Materials and Manufacturing Engineering 109/1 (2021) 17-25. DOI: https://doi.org/10.5604/01.3001.0015.5856
  • 16. O. Baranov, M. Romanov, J. Fang, U. Cvelbar, K. Ostrikov, Control of ion density distribution by magnetic traps for plasma electrons, Journal of Applied Physics 112/7 (2012) 073302. DOI: https://doi.org/10.1063/1.4757022
  • 17. Y. Wang, W. Wang, J. Sun, C. Sun, Y. Feng, Z. Li, Microwave-based preparation and characterization of Fe-cored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance, Carbon 135 (2018) 1-11. DOI: https://doi.org/10.1016/j.carbon.2018.04.026
  • 18. O. Baranov, G. Filipič, U. Cvelbar, Towards a highly-controllable synthesis of copper oxide nanowires in radio-frequency reactive plasma: fast saturation at the targeted size, Plasma Sources Science and Technology 28/8 (2019) 084002. DOI: https://doi.org/10.1088/1361-6595/aae12e
  • 19. O.O. Baranov, J. Fang, A.E. Rider, S. Kumar, K. Ostrikov, Effect of ion current density on the properties of vacuum arc-deposited TiN coatings, IEEE Transactions on Plasma Science 41/12 (2013) 3640-3644. DOI: https://doi.org/10.1109/TPS.2013.2286405
  • 20. A.A. Ashkarran, S.M. Aghigh, S.A.A. Afshar, M. Kavianipour, M. Ghoranneviss, Synthesis and Characterization of ZrO2 Nanoparticles by an Arc Discharge Method in Water, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 41/5 (2011) 425-428. DOI: https://doi.org/10.1080/15533174.2011.568423
  • 21. A.A. Ashkarran, B. Mohammadi, ZnO nanoparticles decorated on graphene sheets through liquid arc discharge approach with enhanced photocatalytic performance under visible-light, Applied Surface Science 342 (2015) 112-119. DOI: https://doi.org/10.1016/j.apsusc.2015.03.030
  • 22. S.B. Tharchanaa, K. Priyanka, K. Preethi, G. Shanmugavelayutham, Facile synthesis of Cu and CuO nanoparticles from copper scrap using plasma arc discharge method and evaluation of antibacterial activity, Materials Technology 36/2 (2021) 97-104. DOI: https://doi.org/10.1080/10667857.2020.1734721
  • 23. J.P. Lei, X.L. Dong, X.G. Zhu, M.K. Lei, H. Huang, X.F. Zhang, B. Lu, W.J. Park, H.S. Chung, Formation and characterization of intermetallic Fe-Sn nano¬particles synthesized by an arc discharge method, Intermetallics 15/12 (2007) 1589-1594. DOI: https://doi.org/10.1016/j.intermet.2007.06.010
  • 24. C. Wang, P. Zhai, Z. Zhang, Y. Zhou, J. Ju, Z. Shi, D. Ma, R.P.S. Han, F. Huang, Synthesis of Highly Stable Graphene-Encapsulated Iron Nanoparticles for Catalytic Syngas Conversion, Particle and Particle Systems Characterization 32/1 (2015) 29-34. DOI: https://doi.org/10.1002/ppsc.201400039
  • 25. P.Z. Si, C.J. Choi, E. Bruck, D.Y. Geng, Z.D. Zhang, Structure and magnetic properties of surface alloyed Fe nanocapsules prepared by arc discharge, Physica B: Condensed Matter 369/1-4 (2005) 215-220. DOI: https://doi.org/10.1016/j.physb.2005.08.023
  • 26. X. Qu, Y. Zhou, X. Li, M. Javid, F. Huang, X. Zhang, X. Dong, Z. Zhang, Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber, Inorganic Chemistry Frontiers 7/5 (2020) 1148-1160. DOI: https://doi.org/10.1039/c9qi01577a
  • 27. Q. Tan, L. Tao, S.U. Rehman, M. Zhong, L. Wang, C. Chen, H. Xiong, W. Xie, Z. Zhong, Improved microwave absorbing properties of core-shell FeCo@C nanoparticles, Materials Research Express 6/7 (2019) 075034. DOI: https://doi.org/10.1088/2053-1591/ab1561
  • 28. D. Bera, S.C. Kuiry, M. McCutchen, A. Kruize, H. Heinrich, M. Meyyappan, S. Seal, In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution, Chemical Physics Letters 386/4-6 (2004) 364-368. DOI: https://doi.org/10.1016/j.cplett.2004.01.082
  • 29. P.K. Karahaliou, P. Svarnas, S.N. Georga, N.I. Xanthopoulos, D. Delaportas, C.A. Krontiras, I. Alexandrou, CuO/Ta2O5 core/shell nanoparticles synthesized in immersed arc-discharge: production conditions and dielectric response, Journal of Nanoparticle Research 14 (2012) 1297. DOI: https://doi.org/10.1007/s11051-012-1297-3
  • 30. B. Xu, J. Guo, X. Wang, X. Liu, H. Ichinose, Synthesis of carbon nanocapsules containing Fe, Ni or Co by arc discharge in aqueous solution, Carbon 44/13 (2006) 2631-2634. DOI: https://doi.org/10.1016/j.carbon.2006.04.024
  • 31. M. Bystrzejewski, O. Łabędź, W. Kaszuwara, A. Huczko, H. Lange, Controlling the diameter and magnetic properties of carbon-encapsulated iron nanoparticles produced by carbon arc discharge, Powder Technology 246 (2013) 7-15. DOI: https://doi.org/10.1016/j.powtec.2013.04.052
  • 32. A.M. El-khatib, I.I. Bondouk, Kh.M. Omar, Ah. Hamdy, M. El-khatib, Impact of changing electrodes dimensions and different ACs on the characteristics of nano composites NZnO/MWCNTs prepared by the arc discharge method, Surfaces and Interfaces 29 (2022) 101736. DOI: https://doi.org/10.1016/j.surfin.2022.101736
  • 33. S. Hinokuma, S. Misumi, H. Yoshida, M. Machida, Nanoparticle catalyst preparation using pulsed arc plasma deposition, Catalysis Science and Technology 5/9 (2015) 4249-4257. DOI: https://doi.org/10.1039/c5cy00636h
  • 34. Y.-C. Huang, M.-H. Teng, T.-H. Tsai, A new model for the synthesis of graphite encapsulated nickel nanoparticles when using organic compounds in an arc-discharge system, Diamond and Related Materials 103 (2020) 107719. DOI: https://doi.org/10.1016/j.diamond.2020.107719
  • 35. R. Kuchi, H.M. Nguyen, V. Dongquoc, P.C. Van, S. Surabhi, S.-G. Yoon, D. Kim, J.-R. Jeong, In-Situ Co-Arc Discharge Synthesis of Fe3O4/SWCNT Composites for Highly Effective Microwave Absorption, Physica Status Solidi A 215/20 (2018) 1700989. DOI: https://doi.org/10.1002/pssa.201700989
  • 36. X. Liu, L. Yu, F. Liu, L. Sheng, K. An, H. Chen, X. Zhao, Preparation of Ag–Fe-decorated single-walled carbon nanotubes by arc discharge and their antibacterial effect, Journal of Materials Science 47 (2012) 6086-6094. DOI: https://doi.org/10.1007/s10853-012-6523-y
  • 37. A. Mao, H. Xiang, X. Ran, Y. Li, X. Jin, H. Yu, X. Gu, Plasma arc discharge synthesis of multicomponent Co-Cr-Cu-Fe-Ni nanoparticles, Journal of Alloys and Compounds 775 (2019) 1177-1183. DOI: https://doi.org/10.1016/j.jallcom.2018.10.170
  • 38. O. Baranov, M. Romanov, Process intensification in vacuum arc deposition setups, Plasma Processes and Polymers 6/2 (2009) 95-100. DOI: https://doi.org/10.1002/ppap.200800131
  • 39. C. Wang, Z. Lu, D. Li, W. Xia, W. Xia, Effect of the Magnetic Field on the Magnetically Stabilized Gliding Arc Discharge and Its Application in the Preparation of Carbon Black Nanoparticles, Plasma Chemistry and Plasma Processing 38 (2018) 1223-1238. DOI: https://doi.org/10.1007/s11090-018-9915-1
  • 40. C. Wang, D. Li, Z. Lu, M. Song, W. Xia, Synthesis of carbon nanoparticles in a non-thermal plasma process, Chemical Engineering Science 227 (2020) 115921. DOI: https://doi.org/10.1016/j.ces.2020.115921
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b69a4774-8aa6-4657-a683-ad064f816713
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.