PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A stem spacing‑based non‑dimensional model for predicting longitudinal dispersion in low‑density emergent vegetatio

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Predicting how pollutants disperse in vegetation is necessary to protect natural watercourses. This can be done using the one-dimensional advection dispersion equation, which requires estimates of longitudinal dispersion coefficients in vegetation. Dye tracing was used to obtain longitudinal dispersion coefficients in emergent artificial vegetation of different densities and stem diameters. Based on these results, a simple non-dimensional model, depending on velocity and stem spacing, was developed to predict the longitudinal dispersion coefficient in uniform emergent vegetation at low densities (solid volume fractions < 0.1). Predictions of the longitudinal dispersion coefficient from this simple model were compared with predictions from a more complex expression for a range of experimental data, including real vegetation. The simple model was found to predict correct order of magnitude dispersion coefficients and to perform as well as the more complex expression. The simple model requires fewer parameters and provides a robust engineering approximation.
Czasopismo
Rocznik
Strony
943--949
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
autor
  • Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
autor
  • Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
Bibliografia
  • 1. Danish Hydraulic Institute (2009) MIKE 11: a modelling system for rivers and channels. Reference manual. Denmark
  • 2. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94
  • 3. Fischer HB, List JE, Koh CR, Imberger J, Brooks NH (1979) Mixing in inland and coastal waters. Elsevier, Amsterdam
  • 4. Huang YH, Saiers JE, Harvey JW, Noe GB, Mylon S (2008) Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida everglades. Water Resour Res 44:W04408
  • 5. Lightbody AF, Nepf HM (2006) Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol Oceanogr 51(1):218–228
  • 6. Nepf HM (1999) Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour Res 35(2):479–489
  • 7. Nepf HM (2012) Flow and transport in regions with aquatic vegetation. Annu Rev Fluid Mech 44:123–142
  • 8. Nepf HM, Mugnier C, Zavistoski R (1997) The effects of vegetation on longitudinal dispersion. Estuar Coast Shelf Sci 44(6):675–684
  • 9. O’Hare MT (2015) Aquatic vegetation—a primer for hydrodynamic specialists. J Hydraul Res 53(6):687–698
  • 10. Shucksmith J, Boxall J, Guymer I (2010) Effects of emergent and submerged natural vegetation on longitudinal mixing in open channel flow. Water Resour Res 46(4):W04504
  • 11. Sonnenwald F, Guymer I, Marchant A, Wilson N, Golzar M, Stovin V (2016). Estimating stem-scale mixing coefficients in low velocity flows. In: sustainable hydraulics in the era of global change: proceedings of the 4th IAHR Europe congress. CRC Press
  • 12. Sonnenwald F, Hart J, West P, Stovin V, Guymer I (2017) Transverse and longitudinal mixing in real emergent vegetation at low velocities. Water Resour Res 53(1):961–978
  • 13. Sonnenwald F, Stovin V, Guymer I (2018a) Use of drag coefficient to predict dispersion coefficients in emergent vegetation at low velocities. Paper presented at the 12th international symposium on ecohydraulics, Tokyo, Japan
  • 14. Sonnenwald F, Stovin V, Guymer I (2018b) Estimating drag coefficient for arrays of rigid cylinders representing vegetation. J Hydraul Res. https://doi.org/10.1080/00221686.2018.1494050
  • 15. Tanino Y (2012) Flow and mass transport in vegetated surface waters. In: Gualtieri C, Mihailovic DT (eds) Fluid mechanics of environmental interfaces, 2nd edn. Taylor & Francis, Abingdon, pp 369–394
  • 16. Tanino Y, Nepf HM (2008) Lateral dispersion in random cylinder arrays at high Reynolds number. J Fluid Mech 600:339–371
  • 17. The MathWorks Inc (2018) MATLAB R2018a, Natick, MA
  • 18. Tinoco RO, Cowen EA (2013) The direct and indirect measurement of boundary stress and drag on individual and complex arrays of elements. Exp Fluids 54(4):1–16
  • 19. White BL, Nepf HM (2003) Scalar transport in random cylinder arrays at moderate Reynolds number. J Fluid Mech 487:43–79
  • 20. Woods-Ballard B, Wilson S, Udale-Clarke H, Illman S, Scott T, Ashley R, Kellagher R (2015) The SUDS manual, report C753. CIRIA, London
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b68d41e1-3ba6-44e2-b52b-13175a703df9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.