PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cryopreservation analysis considering degree of crystallisation using fuzzy arithmetic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents numerical modelling of the heat transfer process in a sample during cryopreservation by vitrification in a microfluidic system. Single-phase flow of the working fluid in the microchannels during warming was considered, while two-phase flow during cooling. The mathematical model is based on the Fourier equation with a source term that takes into account the degree of ice crystallisation. Fuzzy thermophysical parameters were assumed in the model. The problem was solved by the finite difference method and the fourth-order Runge-Kutta algorithm, using the concept of α-cuts. The results of numerical simulation were compared with the results from the literature.
Rocznik
Strony
207--218
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Department of Computational Mechanics and Engineering, Silesian University of Technology, Gliwice, Poland
autor
  • Department of Computational Mechanics and Engineering, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Boutron P., Mehl P., 1990, Theoretical prediction of devitrification tendency: Determination of critical warming rates without using finite expansions, Cryobiology, 27, 4, 359-377.
  • 2. Caniani D., Lioi D.S., Mancini I.M., Masi S., 2011, Application of fuzzy logic and sensitivity analysis for soil contamination hazard classification, Waste Management, 31, 3, 583-594.
  • 3. Desai P.D., 1986, Thermodynamic properties of iron and silicon, Journal of Physical and Chemical Reference Data, 15, 3, 967-983.
  • 4. Fourier J.B.J., 1882, Théorie Analytique de la Chaleur, Firmin Didot.
  • 5. Giachetti R.E., Young R.E., 1997, A parametric representation of fuzzy numbers and their arithmetic operators, Fuzzy Sets and Systems, 91, 2, 185-202.
  • 6. Glassbrenner C.J., Slack G.A., 1964, Thermal conductivity of silicon and germanium from 3°K to the melting point, Physical Review, 134, 4A, A1058-AI069.
  • 7. Guerra M.L., Stefanini L., 2005, Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets and Systems, 150, 1, 5-33.
  • 8. Hanss M., 2005, Applied Fuzzy Arithmetic, Springer, Berlin.
  • 9. Jang T.H., Park S.C., Yang J.H., Kim J.Y., Seok J.H., Park U.S., Choi C.W., Lee S.R., Han J., 2017, Cryopreservation and its clinical applications, Integrative Medicine Research, 6, 1, 12-18.
  • 10. Lü H., Shangguan W.-B., Yu D., 2017, Uncertainty quantification of squeal instability under two fuzzy-interval cases, Fuzzy Sets and Systems, 328, 70-82.
  • 11. MeGlobalTM, 2008, Ethylene Glycol Product Guide, The MEGlobal Group of Companies, 20–21.
  • 12. Mochnacki B., Suchy J., 1993, Modeling and Simulation of Foundry Solidification (in Polish), Wydawnictwo Naukowe PWN, Warszawa.
  • 13. Moore R.E., 1966, Interval Analysis, Printice-Hall, New Jersey.
  • 14. Piasecka-Belkhayat A., Korczak A., 2020, Analysis of ultrashort laser pulse irradiation with 2D thin metal films using the fuzzy lattice Boltzmann method, Journal of Theoretical and Applied Mechanics, 58, 1, 209-219.
  • 15. Piasecka-Belkhayat A., Skorupa A., 2023, Crystallisation degree analysis during cryopreservation of biological tissue applying interval arithmetic, Materials, 16, 6.
  • 16. Shi M., Feng S., Zhang X., Ji C., Xu F., Lu T. J., 2018, Droplet based vitrification for cell aggregates: Numerical analysis, Journal of the Mechanical Behavior of Biomedical Materials, 82, 383-393.
  • 17. Skorupa A., 2023, Multi-scale modelling of heat and mass transfer in tissues and cells during cryopreservation including interval methods, Ph.D. Thesis, Silesian University of Technology, Gliwice.
  • 18. Song Y.S., Adler D., Xu F., Kayaalp E., Nureddin A., Anchan R.M., Maas R.L., Demirci U., 2010, Vitrification and levitation of a liquid droplet on liquid nitrogen, Proceedings of the National Academy of Sciences, 107, 10, 4596-4600.
  • 19. Tan M., Mei J., Xie J., 2021, The formation and control of ice crystal and its impact on the quality of frozen aquatic products: a review, Crystals, 11, 68.
  • 20. Tuckerman D.B., Pease R.F.W., 1981, High-performance heat sinking for VLSI, IEEE Electron Device Letters, 2, 5, 126-129.
  • 21. Wang C., Matthies H.G., 2021, Coupled fuzzy-interval model and method for structural response analysis with non-probabilistic hybrid uncertainties, Fuzzy Sets and Systems, 417, 171-189.
  • 22. Zadeh L.A., 1965, Fuzzy sets, Information and Control, 8, 3, 338-353.
  • 23. Zhang Y., Zhao G., Chapal Hossain S.M., He X., 2017, Modeling and experimental studies of enhanced cooling by medical gauze for cell cryopreservation by vitrification, International Journal of Heat and Mass Transfer, 114, 1-7.
  • 24. Zhao G., Fu J., 2017, Microfluidics for cryopreservation, Biotechnology Advances, 35, 2, 323-336.
  • 25. Zhou X., Liu Z., Liang X.M., Shu Z., Du P., Gao D., 2013, Theoretical investigations of a novel microfluidic cooling/warming system for cell vitrification cryopreservation, International Journal of Heat and Mass Transfer, 65, 381-388.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b68cc963-8b0e-4e67-939b-e6fa64ac0b2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.