PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetorheological fluid magnetic spring harvester design and characterization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnetic springs are widely investigated as energy converters alternative and energy harvesters by converting mechanical vibrations into electricity at low frequencies. In this article the design methodology of novel magnetic spring is proposed to improve the dynamic performance and electrical power. The magnetic spring system is composed by floating magnet and two cylindrical neodymium fixed magnets located on the top and bottom within the cylindrical casing. The external magnets repel the middle (floating) magnet that causes the spring force between them. The advanced magnetic spring system includes a new case with two interior chambers positioned on upper and bottom around the fixed permanent magnets. The chambers are filled with magnetorheological fluid that ensure the higher electrical power in comparison to previous invention in absence of magnetorheological fluid. The general purpose of the realized energy harvester is to provide a novel design of magnetic system with magnetorheological fluid that has the advantages to achieve electrical power in a larger range of frequencies. Additionally, measurements of the displacements and magnetic flux densities have been conducted within a dedicated experimental setup to validate the prototype and its electrical performance.
Twórcy
  • Department of Electrical, Electronics and Informatics Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
autor
  • Department of Mechatronics, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10A, Gliwice 44-100, Poland
  • Department of Mechatronics, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10A, Gliwice 44-100, Poland
autor
  • Department of Mechatronics, Faculty of Electrical Engineering, Silesian University of Technology, Akademicka 10A, Gliwice 44-100, Poland
Bibliografia
  • 1. Sayed ET, Olabi AG, Alami AH, Radwan A, Mdallal A, Rezk A, et al. Renewable energy and energy storage systems. Energies. 2023; 16(3): 1415. https:// doi.org/10.3390/en16031415
  • 2. Ria A, Motroni A, Gagliardi F, Piotto M, Bruschi P. An IoT sensor platform for LED-based optical spectroscopy. In 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), 2023, June; 1–4, https://doi.org/10.23919/ SpliTech58164.2023.10193703
  • 3. Zheng X, He L, Wang S, Liu X, Liu R, Cheng G. A review of piezoelectric energy harvesters for harvesting wind energy. Sensors and Actuators A: Physical. 2023; 352: 114190. https://doi. org/10.1016/j.sna.2023.114190
  • 4. Catania A, Gagliardi F, Piotto M, Bruschi P and Dei M. Ultralow-Power Inverter-Based Delta-Sigma Modulator for Wearable Applications, in IEEE Access, 2024; 12: 80009–80019, https:// doi.org/10.1109/ACCESS.2024.3409842
  • 5. Gagliardi F, Catania A, Ria A, Bruschi P, Piotto M. A compact all-MOSFETs PVT-compensated current reference with untrimmed 0.88%-(σ/μ). In 2023 18th Conference on Ph. D Research in Microelectronics and Electronics (PRIME), 2023, June; 61–64, IEEE. https://doi.org/10.1109/ PRIME58259.2023.10161864
  • 6. Gagliardi F, Ria A, Piotto M, Bruschi P. A 114 ppm/∘ C-TC 0.78%-(σ/μ) Current Reference With Minimum-Current-Search Calibration. IEEE Transactions on Circuits and Systems II: Express Briefs., 2023, https://doi.org/10.1109/TCSII.2023.3339586
  • 7. Sun M, Song M, Wei G, Hua F. Electro-mechanical coupling analysis of l-shaped three-dimensional braided piezoelectric composites vibration Energy harvester. Materials. 2024; 17(12): 2858. https://doi. org/10.3390/ma17122858
  • 8. Manikkavel A, Kumar V, Alam MN, Kim U, Park SS. The electro-mechanical energy harvesting configurations in different modes from machine to selfpowered wearable electronics. ACS Applied Electronic Materials. 2023; 5(10): 5537–5554. https:// doi.org/10.1021/acsaelm.3c00819
  • 9. Du R, Xiao J, Chang S, Zhao L, Wei K, Zhang W, et al. Mechanical energy harvesting in traffic environment and its application in smart transportation. Journal of Physics D: Applied Physics. 2023; 56(37): 373002. https://doi.org/10.1088/1361-6463/ acdadb
  • 10. Panda S, Hajra S, Oh Y, Oh W, Lee J, Shin H, et al. Hybrid nanogenerators for ocean energy harvesting: mechanisms, designs, and applications. Small. 2023; 19(25): 2300847. https://doi.org/10.1002/ smll.202300847
  • 11. Yu J, Li D, Li S, Xiang Z, He Z, Shang J, et al. Electromagnetic vibration energy harvester using magnetic fluid as lubricant and liquid spring. Energy Conversion and Management. 2023; 286: 117030. https://doi.org/10.1016/j.enconman.2023.117030
  • 12. Bahari MS, Firdaus M, Mohamed Z, Ramli MHM. Computational numerical analysis of a magnetic flux permanent magnet with different shape for the development of a hybrid generator. Journal of Mechanical Engineering (1823–5514). 2023; 20(1). https://doi.org/10.24191/jmeche.v20i1.21087
  • 13. Li B, Wang W, Li Z, Wei R. Hand-held rolling magnetic-spring energy harvester: Design, analysis, and experimental verification. Energy Conversion and Management. 2024; 301: 118022. https://doi. org/10.1016/j.enconman.2023.118022
  • 14. Deng L, Fan J, Gao X, Zhang Y, Fang Y, Wang D. Reducing the resonant frequency of the vibration nergy harvester with a negative stiffness magnetic spring. IEEE Sensors Journal. 2024. https://doi. org/10.1109/JSEN.2024.3407754
  • 15. Royo-Silvestre I, Beato-L´opez J, G´omez-Polo C. Optimization procedure of low frequency vibration energy harvester based on magnetic levitation. Applied Energy. 2024; 360: 122778. https://doi. org/10.1016/j.apenergy.2024.122778
  • 16. Zhang X, Li G, Su S. Numerical and experimental performance study of magnetic levitation Energy harvester with magnetic liquid for low-powerdevice’s energy storage. Journal of Energy Storage. 2024; 75: 109584. https://doi.org/10.1016/j. est.2023.109584
  • 17. Fan B, Fang J, Jiang S, Li C, Shao J, Liu W. A hybrid energy harvester inspired by bionic flapping wing structure based on magnetic levitation. Review of Scientific Instruments. 2024; 95(1). https://doi. org/10.1063/5.0178117
  • 18. Hu C, Wang X, Wang Z, Wang S, Liu Y, Li Y. Electromagnetic vibrational energy harvester with targeted frequency-tuning capability based on magnetic levitation. Nanotechnology and Precision Engineering. 2024; 7(4). https://doi.org/10.1063/10.0025788
  • 19. Yu J, Yao J, Li D, Yu J, Xiao H, Zhang H, et al. A nonlinear electromagnetic vibration energy harvester lubricated by magnetic fluid for low-frequency vibration. Applied Physics Letters. 2023; 123(4). https://doi.org/10.1063/5.0157431
  • 20. Li C, Wu S, Luk PCK, Gu M, Jiao Z. Enhanced bandwidth nonlinear resonance electromagnetic human motion energy harvester using magnetic springs and ferrofluid. IEEE/ASME Transactions on Mechatronics. 2019; 24(2): 710–717. https://doi. org/10.1109/TMECH.2019.2898405
  • 21. Bahl S, Nagar H, Singh I, Sehgal S. Smart materials types, properties and applications: A review. Materials Today: Proceedings. 2020; 28: 1302–1306. https://doi.org/10.1016/j.matpr.2020.04.505
  • 22. Hua D, Liu X, Li Z, Fracz P, Hnydiuk-Stefan A, Li Z. A review on structural configurations of magetorheological fluid based devices reported in 2018–2020. Frontiers in Materials. 2021; 8: 640102. https://doi.org/10.3389/fmats.2021.640102
  • 23. Skalski P, Kalita K. Role of magnetorheological fluids and elastomers in today’s world. acta mechanica et automatica. 2017; 11(4): 267–274. https://doi. org/10.1515/ama-2017-0041
  • 24. Kowol P. From simple experiments to modern mechatronic devices-development of MR fluid applications. In: 2015 Selected Problems of Electrical Engineering and Electronics (WZEE). IEEE; 2015; 1–4. https://doi.org/10.1109/WZEE.2015.7394022
  • 25. Kowol P, Lo Sciuto G, Brociek R, Capizzi G. Magnetic Characterization of MR Fluid by Means of Neural Networks. Electronics. 2024; 13(9): 1723. https://doi.org/10.3390/electronics13091723
  • 26. Lo Sciuto G, Kowol P, Capizzi G. Modeling and experimental characterization of a clutch contro strategy using a magnetorheological fluid. Fluids. 2023; 8(5): 145. https://doi.org/10.3390/ fluids8050145
  • 27. Yoon DS, Kim GW, Choi SB. Response time of magnetorheological dampers to current inputs in a semi-active suspension system: Modeling, control and sensitivity analysis. Mechanical Systems and Signal Processing. 2021; 146: 106999. https://doi. org/10.1016/j.ymssp.2020.106999
  • 28. Hua D, Liu X, Sun S, Sotelo MA, Li Z, Li W. A magnetorheological fluid-filled soft crawling robot with magnetic actuation. IEEE/ASME Transactions on Mechatronics. 2020; 25(6): 2700–2710. https:// doi.org/10.1109/TMECH.2020.2988049
  • 29. Kun T, Hu S, Yinyun Y, Xuesong M. Magnetorheological fluid based force feed-back performance for main manipulator of invasive surgical robot. Journal of Advanced Manufacturing Science and Technology. 2022; 2(2). https://doi.org/10.51393/j.jamst.2022007
  • 30. Eshgarf H, Nadooshan AA, Raisi A. An overview on properties and applications of magnetorheological fluids: Dampers, batteries, valves and brakes. Journal of Energy Storage. 2022; 50: 104648. https:// doi.org/10.1016/j.est.2022.104648
  • 31. Zhang G, Chen J, Zhang Z, Sun M, Yu Y, Wang J, et al. Analysis of magnetorheological clutch with double cup-shaped gap excited by Halbach array based on finite element method and experiment. Smart Materials and Structures. 2022; 31(7): 075008. https://doi.org/10.1088/1361-665X/ac701a
  • 32. Korona T, Kowol P, Lo Sciuto G. Design, manufacture and experimental characterization of magnetorheological rotary brake based on a peristaltic pump system. Electrical Engineering. 2023; 105(1): 435– 446. https://doi.org/10.1007/s00202-022-01675-5
  • 33. Lo Sciuto G, Kowol P, Pilśniak A. Automated measurements and characterization of magnetic permeability in magnetorheological fluid. Microfluidics and Nanofluidics. 2022; 26(8): 55. https://doi. org/10.1007/s10404-022-02565-9
  • 34. Sikulskyi S, Malik A, Kim D. Magnetorheological Fluid Filled Spring for Variable Stiffness and Damping: Current and Potential Performance. Frontiers in Materials. 2022; 9: 856945. https://doi.org/10.3389/ fmats.2022.856945
  • 35. Wang X, Zhang Y, Xue S, Wang T, Fu G, Mao X, et al. Bi-stable electromagnetic generator with asymmetrical potential wells for low frequency vibration energy harvesting. Mechanical Systems and Signal Processing. 2023; 199: 110478. https://doi. org/10.1016/j.ymssp.2023.110478
  • 36. Litak G, Kondratiuk M, Wolszczak P, Ambrożkiewicz B, Giri AM. Energy Harvester Based on a Rotational Pendulum Supported with FEM. Applied Sciences. 2024; 14(8): 3265. https://doi. org/10.3390/app14083265
  • 37. Lo Sciuto G, Bijak J, Kowalik Z, Kowol P, Brociek R, Capizzi G. Deep learning model for magnetic flux density prediction in magnetic spring on the vibration generator. IEEE Access. 2024. https://doi. org/10.1109/ACCESS.2024.3406927
  • 38. Bijak J, Sciuto GL, Kowalik Z, Lasek P, Szczygieł M, Trawiński T. Magnetic flux density analysis of magnetic spring in energy harvester by Hall-effect sensors and 2D magnetostatic FE model. Journal of Magnetism and Magnetic Materials. 2023; 579: 170796. https://doi.org/10.1016/j. jmmm.2023.170796 39. Bijak J, Trawiński T, Szczygieł M. Simulation and investigation of the change of geometric parameters on voltage induced in the energy harvesting system with magnetic spring. Electronics. 2022; 11(10): 1639. https://doi.org/10.3390/electronics11101639
  • 40. Bijak J, Lo Sciuto G, Kowalik Z, Trawiński T, Szczygieł M. A 2-DoF kinematic chain analysis of a magnetic spring excited by vibration generator based on a neural network design for energy harvest- ing applications. Inventions. 2023; 8(1): 34. https:// doi.org/10.3390/inventions8010034
  • 41. Lo Sciuto G, Bijak J, Kowalik Z, Szczygieł M, Trawiński T. Displacement and magnetic induction measurements of energy harvester system based on magnetic spring integrated in the electromagnetic vibration generator. Journal of Vibration Engineering & Technologies. 2024; 12(3): 3305–3320. https://doi.org/10.1007/s42417-023-01045-w
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b68bf492-fbc7-470c-b3d2-851d258c9697
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.