PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Failure Strength of Real Alumina Foams with Use of the Periodic Structure Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the study are alumina foams produced by gelcasting method. The results of micro-computed tomography of the foam samples are used to create the numerical model reconstructing the real structure of the foam skeleton as well as the simplified periodic open-cell structure models. The aim of the paper is to present a new idea of the energy-based assessment of failure strength under uniaxial compression of real alumina foams of various porosity with use of the periodic structure model of the same porosity. Considering two kinds of cellular structures: the periodic one, for instance of fcc type, and the random structure of real alumina foam it is possible to justify the hypothesis, computationally and experimentally, that the same elastic energy density cumulated in the both structures of the same porosity allows to determine the close values of fracture strength under compression. Application of finite element computations for the analysis of deformation and failure processes in real ceramic foams is time consuming. Therefore, the use of simplified periodic cell structure models for the assessment of elastic moduli and failure strength appears very attractive from the point of view of practical applications.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warsaw, Poland
autor
  • Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Rzeszów University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] L. J. Gibson, M.F. Ashby, Cellular Solids, Structure and Properties, 2nd edition, Cambridge (1999).
  • [2] W.-Y. Jang, A. M. Kraynik, S. Kyriakides, On the microstructure of open-cell foams and its effect on elastic properties, Int. J. Solids and Struct. 45 (7), 1845-1875 (2008).
  • [3] A. P. Roberts, E. J. Garboczi, Elastic properties of model random three-dimensional open-cell solid, J. Mech. Phys. Solids 50, 33-55 (2002).
  • [4] T. Lu, H. Stone, M. Ashby, Heat transfer in open-cell metal foams Acta Mater. 46, 3619 -3635 (1998).
  • [5] M. Janus-Michalska, R. B. Pęcherski, Macroscopic properties of open-cell foams based on micromechanical modelling, Technische Mechanik 23, 234-244 (2003).
  • [6] M. Nowak, Z. Nowak, R. B. Pęcherski, M. Potoczek, R. E. Śliwa, On the reconstruction method of ceramic foam structures and the methodology of Young modulus determination, Archives of Metallurgy and Materials 58, 1219-1222 (2013).
  • [7] Z. Nowak, M. Nowak, R. B. Pęcherski, M. Potoczek, R. E. Śliwa, Mechanical properties of the ceramic open-cell foams of variable cel sizes, Archives of Metallurgy and Materials 60, 1957-1963 (2015).
  • [8] Z. Nowak, M. Nowak, R. Pęcherski, M. Potoczek, R. E. Śliwa, Numerical simulations of mechanical properties of alumina foams based on computed tomography, Journal of Mechanics of Materials and Structures 1, 107-121 (2017).
  • [9] W. Burzyński, Selected passages from Włodzimierz Burzyński doctoral dissertation Study on Material Effort Hypotheses, Engineering Transactions 57, 185-215 (2009).
  • [10] W. Burzyński, Über die Anstrengungshypothesen. Schweizerische Bauzeitung 94 (21), 259-262 (1929).
  • [11] G. Vadillo, J. Fernandez-Saez, R. B. Pęcherski, Some applications of Burzynski yield condition in metal plasticity, Materials and Design 32, 628-635 (2011).
  • [12] R. B. Pęcherski, K. Nalepka, T. Fraś, M. Nowak, Inelastic Flow and Failure of Metallic Solids. Material Effort: Study Across Scales, in : Constitutive Relations under Impact Loadings. Experiments, Theoretical and Numerical Aspects, Łodygowski T., Rusinek A. (eds.), Springer, CISM, Udine 552, 245-285 (2014).
  • [13] S. Zhang, M. Guan, G. Wu, S. Gao, X. Chen, An ellipsoidal yield criterion for porous metals with accurate descriptions of theoretical strength and Poisson’s ratio, Acta Mechanica 228, 4199-4210 (2017).
  • [14] ScanIP, ver. 7.0 (2014), http://www.simpleware.com/software/scanip.
  • [15] L. M. Kachanov, On time to failure in creep conditions, Izv. Ak. Nauk SSSR OTN, 8, pp. 26-31 (1958).
  • [16] J. Lubliner, J. Oliver, S. Oller, E. Oñate, A plastic-damage model for concrete, International Journal of Solids and Structures 25, 299-326 (1989).
  • [17] Simulia, ABAQUS/Standard User’s Manual, Version 6.13 Edition. Dassault Systemes, Providence, USA (2013).
  • [18] M. Nowak, Analysis of deformation and failure of ceramic foam structures in application to numerical simulation of infiltration processes of alumina foam by liquid metal, PhD thesis, in Polish, IPPT PAN, Warsaw (2014).
  • [19] M. Potoczek, Gelcasting of alumina foams using agarose solutions, Ceramics International 34, 661-667 (2008).
Uwagi
EN
Financial support of Structural Funds in the Operational Program Innovative Economy (IE OP) financed from the European Regional Development Fund Project ”Modern material technologies in aerospace industry”, Nr POIG.01.01.02-00-015/08-00 is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b68599c2-1672-40c8-8701-87ad1d1b22a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.