Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Audio-magnetotelluric (AMT) method is a kind of frequencydomain sounding technique, which can be applied to gas hydrate prospecting and assessments in the permafrost region due to its high frequency band. Based on the geological conditions of gas hydrate reservoir in the Qilian Mountain permafrost, by establishing high-resistance abnormal model for gas hydrate and carrying out numerical simulation using finite element method (FEM) and nonlinear conjugate gradient (NLCG) method, this paper analyzed the application range of AMT method and the best acquisition parameters setting scheme. When porosity of gas hydrate reservoir is less than 5%, gas hydrate saturation is greater than 70%, occurrence scale is less than 50 m, or bury depth is greater than 500 m, AMT technique cannot identify and delineate the favorable gas hydrate reservoir. Survey line should be more than twice the length of probable occurrence scale, while tripling the length will make the best result. The number of stations should be no less than 6, and 11 stations are optimal. At the high frequency section (10~1000 Hz), there should be no less than 3 frequency points, 4 being the best number.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1368--1404
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
autor
- School of Nuclear Engineering and Geophysics, East China University of Technology, Nanchang, People’s Republic of China
- School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing, People’s Republic of China
autor
- School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing, People’s Republic of China
autor
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing, People’s Republic of China
autor
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing, People’s Republic of China
Bibliografia
- [1] Abdelzaher, M., J. Nishijima, G. EI-Qady, E. Aboud, O. Masoud, M. Soliman, and S. Ehara (2011), Gravity and magnetotelluric investigations to elicit the origin of Hammam Faraun hot spring, Sinai Peninsula, Egypt, Acta Geophys. 59, 3, 633-656, DOI: 10.2478/s11600-011-0006-4.
- [2] Archie, G.E. (1942), The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. AIME 146, 1, 54-62, DOI: 10.2118/942054-G.
- [3] Balyavskii, V.V., and V.V. Sukhoi (2004), The method of audio-frequency magnetotelluric sounding in mineral exploration, Izv. - Phys. Solid Earth. 40, 6, 515-533.
- [4] Boswell, R., and T.S. Collett (2011), Current perspectives on gas hydrate resources, Energy Environ. Sci. 4, 1206-1215, DOI: 10.1039/c0ee00203h.
- [5] Boswell, R., G. Moridis, M. Reagan, and T.S. Collett (2011), Gas hydrate accumulation types and their application to numerical simulation. In: Proc. 7th Int. Conf. on Gas Hydrates (ICGH 2011), 17-22 July 2011, Edinburgh, Scotland, Manuscript No. 130.
- [6] Bronner, G., and J.P. Fourno (1992), Audio-magnetotelluric investigation of allochthonous iron formations in the Archaean Reguibat shield (Mauritania): structural and mining implications, J. Afr. Earth Sci. 15, 3-4, 341-351, DOI: 10.1016/0899-5362(92)90019-9.
- [7] Bybee, K. (2004), Natural gas technology/monetization: Overview of the Mallik gas-hydrate production research well, J. Petrol. Technol. 56, 4, 53-54, DOI: 10.2118/0404-0053-JPT.
- [8] Carcione, J.M., and D. Gei (2004), Gas-hydrate concentration estimated from P- and S-wave velocities at the Mallik 2L-38 research well, Mackenzie Delta, Canada, J. Appl. Geophys. 56, 1, 73-78, DOI: 10.1016/j.jappgeo.2004.04.001.
- [9] Clerc, G., J.P. Décriaud, G. Doyen, M. Halbwachs, M. Henrotte, J. Rémy, and X.C. Zhang (1984), An automatic audio-magnetotelluric equipment, controlled by microprocessor, for the telesurveillance of the volcano Momotombo (Nicaragua), Surv. Geophys. 6, 3-4, 291-304, DOI: 10.1007/ BF01465544.
- [10] Coggon, J.H. (1971), Electromagnetic and electrical modeling by the finite element method, Geophysics 36, 1, 132-155, DOI: 10.1190/1.1440151.
- [11] Collett, T.S. (2002), Energy resource potential of natural gas hydrates, AAPG Bull. 86, 11, 1971-1992.
- [12] Collett, T.S. (2005), Results at Mallik highlight progress in gas hydrate energy resource research and development, Petrophysics 46, 3, 237-243.
- [13] Collett, T.S., M.W. Lee, W.F. Agena, J.J. Miller, K.A. Lewis, M.V. Zyrianova, R. Boswell, and T.L. Inks (2011), Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope, Mar. Petrol. Geol. 28, 2, 279-294, DOI: 10.1016/j.marpetgeo.2009.12.001.
- [14] Constable, S.C., R.L. Parker, and C.G. Constable (1987), Occam’s inversion: A practical algorithm for generating smooth models from electromagenetic sounding data, Geophysics 52, 3, 289-300, DOI: 10.1190/1.1442303.
- [15] De Lugão, P.P., and P.E. Wannamaker (1996), Calculating the two-dimensional magnetotelluric Jacobian in finite elements using reciprocity, Geophys. J. Int. 127, 3, 806-810, DOI: 10.1111/j.1365-246X.1996.tb04060.x.
- [16] Dickens, G.R. (2001), The potential volume of oceanic methane hydrates with variable external conditions, Org. Geochem. 32, 10, 1179-1193, DOI: 10.1016/ S0146-6380(01)00086-9.
- [17] Fu, J.H., and L.F. Zhou (1998), Carboniferous-Jurassic stratigraphic provinces of the southern Qilian basin and their petrogeological features, Northwest Geosci. 19, 2, 47-54 (in Chinese).
- [18] Goldberg, S., and Y. Rotstein (1982), A simple form of presentation of magnetotelluric data using the Bostick transform, Geophys. Prosp. 30, 2, 211-216, DOI: 10.1111/j.1365-2478.1982.tb01299.x.
- [19] Guo, X.W., and Y.H. Zhu (2011), Well logging characteristics and evaluation of hydrates in Qilian Mountain permafrost, Geol. Bull. China 30, 12, 1869-1873 (in Chinese).
- [20] Hestenes, M.R. (1973), Iterative methods for solving linear equations, J. Optimiz. Theory App. 11, 4, 323-334, DOI: 10.1007/BF00932484.
- [21] Hestenes, M.R., and E. Stiefel (1952), Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand. 49, 6, 409-436, DOI: 10.6028/ jres.049.044.
- [22] Hu, Z.Z., X.Y. Hu, and Z.X. He (2006), Pseudo-three-dimensional magnetotelluric inversion using nonlinear conjugate gradients, Chinese J. Geophys. 49, 4, 1111-1120, DOI: 10.1002/cjg2.934.
- [23] Huo, Y.Y., and M. Zhang (2009), Full waveform inversion of gas hydrate reflectors in Northern South China Sea, Acta Geophys. 57, 3, 716-727, DOI: 10.2478/ s11600-009-0011-z.
- [24] Israil, M. (2006), Delineation of layer boundaries from smooth models obtained from the geoelectrical sounding data inversion, Acta Geophys. 54, 2, 126-141, DOI: 10.2478/s11600-006-0012-0.
- [25] Koh, C.A., A.K. Sum, and E.D. Sloan (2012), State of the art: Natural gas hydrates as a natural resource, J. Nat. Gas Sci. Eng. 8, 132-138, DOI: 10.1016/ j.jngse.2012.01.005.
- [26] Lee, M.W., and T.S. Collett (2011), In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope, Mar. Petrol. Geol. 28, 2, 439-449, DOI: 10.1016/j.marpetgeo.2009.06.007.
- [27] Li, X.S., B. Yang, G. Li, and B. Li (2012), Numerical simulation of gas production from natural gas hydrate using a single horizontal well by depressurization in Qilian Mountain permafrost, Ind. Eng. Chem. Res. 51, 11, 4424-4432, DOI: 10.1021/ie201940t.
- [28] Lin, Z.Z., Y. Li, W.L. Gao, G.S. Kong, and S.Z. Sun (2013), Physical character analysis of logging data for natural gas hydrate in Qilian Mountain permafrost area, Geophys. Geochem. Explor. 37, 5, 834-838.
- [29] Lu, Z.Q., Y.H. Zhu, Y.Q. Zhang, H.J. Wen, Y.H. Li, and C.L. Liu (2011), Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China, Cold Reg. Sci. Technol. 66, 2-3, 93-104, DOI: 10.1016/j. coldregions.2011.01.008.
- [30] Lu, Z.Q., Y.H. Zhu, H. Liu, Y.Q. Zhang, C.S. Jin, X. Huang, and P.K. Wang (2013a), Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai, Mar. Petrol. Geol. 43, 341-348, DOI: 10.1016/ j.marpetgeo.2013.01.003.
- [31] Lu, Z.Q., X.H. Xue, Z.W. Liao, and H. Liu (2013b), Source rocks for gases from gas hydrate and their burial depth in the Qilian Mountain permafrost, Qinghai: Results from thermal stimulation, Energy Fuels 27, 12, 7233-7244, DOI: 10.1021/ef4010797.
- [32] Mackie, R.L., J.T. Smith, and T.R. Madden (1994), Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example, Radio Sci. 29, 4, 923-935, DOI: 10.1029/94RS00326.
- [33] Moridis, G.J., T.S. Collett, M. Pooladi-Darvish, S. Hancock, C. Santamarina, R. Boswell, T.. Kneafsey, J. Rutqvist, M.B. Kowalsky, M.T. Reagan, E.D. Sloan, A.K. Sum, and C.A. Koh (2011), Challenges, uncertainties, and issues facing gas production from gas hydrate deposits, SPE Reserv. Eval. Eng. 14, 1, 76-112, SPE-131792, DOI: 10.2118/131792-PA.
- [34] Newman, G.A., and D.L. Alumbaugh (1997), 3D electromagnetic modeling using staggered finite differences. In: 1997 IEEE Int. Geosci. Remote Sens. Symp. “Remote Sensing - A Scientific Vision for Sustainable Development”, 3-8 August 1997, Singapore, Vol. 2, 929-932, DOI: 10.1109/IGARSS.1997.615301.
- [35] Newman, G.A., and D.L. Alumbaugh (2000), Three-dimensional magnetotelluric inversion using non-linear conjugate gradients, Geophys. J. Int. 140, 2, 410-424, DOI: 10.1046/j.1365-246x.2000.00007.x.
- [36] Ogawa, Y., M. Uyeshima, Y. Honkura, H. Utada, and S. Koyama (1994), Audiofrequency magnetotelluric imaging of an active strike-slip fault, J. Geomagn. Geoelectr. 46, 5, 403-408, DOI: 10.5636/jgg.46.403.
- [37] Pang, S.J., X. Su, H. He, Q. Zhao, Y.H. Zhu, P.K. Wang, Y.H. Li, and Q.H. Li (2013), Geological controlling factors of gas hydrate occurrence in Qilian Mountain permafrost, China, Earth Sci. Front. 20, 1, 223-239 (in Chinese).
- [38] Rodi, W., and R.L. Mackie (2001), Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion, Geophysics 66, 1, 174-187, DOI: 10.1190/1.1444893.
- [39] Ryan, W.B.F., S.M. Carbotte, J.O. Coplan, S. O’Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A. Goodwillie, F. Nitsche, J. Bonczkowski, and R. Zemsky (2009), Global multi-resolution topography synthesis, Geochem. Geophys. Geosyst. 10, 3, DOI: 10.1029/2008GC002332.
- [40] Santos, F.A.M., A. Trota, A. Soares, R. Luzio, N. Lourenço, L. Matos, E. Almeida, J.L. Gaspar, and J.M. Miranda (2006), An audio- magnetotelluric investigation in Terceira Island (Azores), J. Appl. Geophys. 59, 4, 314-323, DOI: 10.1016/j.jappgeo.2005.12.001.
- [41] Santos, F.A.M., A.R.A. Afonso, and A. Dupis (2007), 2D joint inversion of dc and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields, J. Geophys. Eng. 4, 1, 53-62, DOI: 10.1088/1742-2132/ 4/1/007.
- [42] Schnegg, P.A., B.V. Lequang, G. Fischer, and J.T. Weaver (1983), Audiomagnetotelluric study of a structure with a reverse fault, J. Geomagn. Geoelectr. 35, 11-12, 653-671, DOI: 10.5636/jgg.35
- [43] Sloan, E.D., Jr. (1998), Clathrate Hydrates of Natural Gases, 2nd ed., Marcel Dekker Inc., New York.
- [44] Smith, J.T., and J.R. Booker (1991), Rapid inversion of two- and three-dimensional magnetotelluric data, J. Geophys. Res. 96, B3, 3905-3922, DOI: 10.1029/ 90JB02416.
- [45] Spichak, V.V. (2012), Evaluation of the feasibility of recovering the magma chamber’s parameters by 3D Bayesian statistical inversion of synthetic MT data, Acta Geophys. 60, 3, 942-958, DOI: 10.2478/s11600-012-0008-x.
- [46] Strangway, D.W., C.M. Swift, Jr., and R.C. Holmer (1973), The application of audio- frequency magnetotellurics (AMT) to mineral exploration, Geophysics 38, 6, 1159-1175, DOI: 10.1190/1.1440402.
- [47] Sun, Z.J., Z.B. Yang, H. Mei, A.H. Qin, F.G. Zhang, Y.L. Zhou, S.Y. Zhang, and B.W. Mei (2014), Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China, J. Geochem. Explor. 139, 160-169, DOI: 10.1016/j.gexplo.2013.10.006.
- [48] Tikhonov, A.N., and V.Y. Arsenin (1978), Solutions of ill-posed problems, Math. Comput. 32, 144, 1320-1322, DOI: 10.2307/2006360.
- [49] Wang, P.K., Y.H. Zhu, Z.Q. Lu, X. Huang, S.J. Pang, and S. Zhang (2014), Gas hydrate stability zone migration occurred in the Qilian Mountain permafrost, Qinghai, Northwest China: Evidences from pyrite morphology and pyrite sulfur isotope, Cold Reg. Sci. Technol. 98, 8-17, DOI: 10.1016/ j.coldregions.2013.10.006.
- [50] Wang, T. (2010), Gas hydrate resource potential and its exploration and development prospect of the Muli coalfield in the northeast Tibetan plateau, Energ. Explor. Exploit. 28, 3, 147-158, DOI: 10.1260/0144-5987.28.3.147.
- [51] Wannamaker, P.E. (1991), Advances in three-dimensional magnetotelluric modeling using integral equations, Geophysics 56, 11, 1716-1728, DOI: 10.1190/1.1442984.
- [52] Wannamaker, P.E., J.A. Stodt, and L. Rijo (1987), A stable finite element solution for two-dimensional magnetotelluric modelling, Geophys. J. Int. 88, 1, 277-296, DOI: 10.1111/j.1365-246X.1987.tb01380.x.
- [53] Wu, Q.B., G.L. Jiang, and P. Zhang (2010), Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai-Tibet Plateau, Energ. Conv. Manage. 51, 4, 783-787, DOI: 10.1016/j.enconman.2009.10.035.
- [54] Xiao, K., C.C. Zou, B. Xiang, and J.Q. Liu (2013), Acoustic velocity log numerical simulation and saturation estimation of gas hydrate reservoir in Shenhu area, South China Sea, Sci. World J. 2013, 101459, DOI: 10.1155/2013/101459.
- [55] Xiong, Z.H., and A.C. Tripp (1997), 3-D electromagnetic modeling for near-surface targets using integral equations, Geophysics 62, 4, 1097-1106, DOI: 10.1190/1.1444210.
- [56] Xu, S.Z. (1994), The Finite Element Method in Geophysics, Science Press, Beijing (in Chinese).
- [57] Yamaguchi, S., Y. Ogawa, K. Fuji-ta, N. Ujihara, H. Inokuchi, and N. Oshiman (2010), Audio-frequency magnetotelluric imaging of the Hijima fault, Yamasaki fault system, southwest Japan, Earth Planets Space 62, 4, 401-411, DOI: 10.5047/eps.2009.12.007.
- [58] Yang, R., P. Yan, N.Y. Wu, Z.B. Sha, and J.Q. Liang (2014), Application of AVO analysis to gas hydrates identification in the northern slope of the South China Sea, Acta Geophys. 62, 4, 802-817, DOI: 10.2478/s11600-013-0193-2.
- [59] Yao, D.W., S.M. Wang, D. Lei, W. Zhu, and G. Wang (2013), Application of CSAMT to Qilian Mountain permafrost region gas hydrate investigation, Chin. J. Eng. Geophys. 10, 2, 132-137 (in Chinese).
- [60] Zhao, J.F., T. Yu, Y.C. Song, D. Liu, W.G. Liu, Y. Liu, M.J. Yang, X.K. Ruan, and Y.H. Li (2013), Numerical simulation of gas production from hydrate deposits using a single vertical well by depressurization in the Qilian Mountain permafrost, Qinghai-Tibet Plateau, China, Energy 52, 308-319, DOI: 10.1016/j.energy.2013.
- [61] Zhu, Y.H., Y.Q. Zhang, H.J. Wen, Z.Q. Lu, Z.Y. Jia, Y.H. Li, Q.H. Li, C.L. Liu, P.K. Wang, and X.W. Guo (2010), Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China, Acta Geol. Sin. (Engl. Ed.) 84, 1, 1-10, DOI: 10.1111/j.1755-6724.2010.00164.x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6833d42-df6e-449a-95d4-791a95f0e5c0