PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of adopting the anti-smog resolution on air quality – the case study from Krakow

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Skutki przyjęcia uchwały antysmogowej na jakość powietrza – studium przypadku Krakowa
Języki publikacji
EN
Abstrakty
EN
We evaluate the impact of Krakow’s Anti-Smog Resolution, which was passed on January 15, 2016, and prohibits the use of coal and wood within the city. We use random forest, interrupted time series, and Bayesian structural time series models to assess air quality gains in terms of PM10, PM2.5, and benzo(a)pyrene concentrations, predicting pollution levels if the legislation had not been implemented. The results show significant reductions in pollutant concentrations: PM10 fell by 23% to 39%, PM2.5 by 23% to 36% and benzo(a)pyrene in PM10 by 39% to 41%, with the highest declines occurring during the heating season. These findings indicate the efficacy of Krakow's legislative strategy, offering evidence-based benchmarks for policymakers and public health officials in other cities considering similar residential heating restrictions to achieve measurable air quality improvements.
PL
Oceniamy wpływ krakowskiej uchwały antysmogowej, która została przyjęta 15 stycznia 2016 r. i zakazuje używania węgla i drewna na terenie miasta. Wykorzystujemy metodę lasu losowego, przerywanych szeregów czasowych i Bayesowskich strukturalnych szeregów czasowych do oceny poprawy jakości powietrza pod względem stężeń PM10, PM2,5 i benzo(a)pirenu, przewidując poziomy zanieczyszczeń w sytuacji, gdyby przepisy nie zostały wdrożone. Wyniki wskazują na znaczne obniżenie stężeń zanieczyszczeń: PM10 spadło od 23% do 39%, PM2,5 od 23% do 36%, a benzo(a)piren w PM10 od 39% do 41%, przy czym największe spadki miały miejsce w sezonie grzewczym. Wyniki te wskazują na skuteczność strategii legislacyjnej Krakowa, dostarczając opartych na dowodach punktów odniesienia dla decydentów politycznych i przedstawicieli służby zdrowia publicznego w innych miastach rozważających wprowadzenie podobnych ograniczeń dotyczących ogrzewania mieszkań w celu osiągnięcia wymiernej poprawy jakości powietrza.
Rocznik
Tom
Strony
art. no. 931
Opis fizyczny
Bibliogr. 62 poz., tab., wykr.
Twórcy
  • Poznań University of Economics and Business, Niepodległości Avenue 10, 61-875 Poznań, Poland
  • Poznań University of Economics and Business
  • University College Dublin Michael Smurfit Graduate Business School
Bibliografia
  • Adamkiewicz, Ł., Mucha, D., & Cygan, M. (2021). Ludzie czy pogoda. Co poprawia jakość powietrza? Analizy z wykorzystaniem modelu normalizującego stężenie zanieczyszczeń powietrza z wykorzystaniem danych meteorologicznych. https://www.portalsamorzadowy.pl/pliki-download/175372.html (in Polish).
  • Anh, V., Duc, H., & Azzi, M. (1997). Modeling anthropogenic trends in air quality data. Journal of the Air & Waste Management Association, 47(1), 66–71. https://doi.org/10.1080/10473289.1997.10464406
  • Barría-Sandoval, C., Ferreira, G., Lagos, B., & Montecino Bacigalupo, C. (2022). Assessing the effectiveness of quarantine measures during the COVID-19 pandemic in Chile using Bayesian structural time series models. Infectious Disease Modelling, 7(4), 625–636. https://doi.org/10.1016/j.idm.2022.08.007
  • Bernal, J. L., Cummins, S., & Gasparrini, A. (2017). Interrupted time series regression for the evaluation of public health interventions: A tutorial. International Journal of Epidemiology, 46(1), 348–355. https://doi.org/10.1093/ije/dyw098
  • Bernstein, J. A., Alexis, N., Barnes, C., Bernstein, I. L., Nel, A., Peden, D., Diaz-Sanchez, D., Tarlo, S. M., & Williams, P. B. (2004). Health effects of air pollution. Journal of Allergy and Clinical Immunology, 114(5), 1116–1130. https://doi.org/10.1016/j.jaci.2004.08.030
  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
  • Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., & Scott, S. L. (2015). Inferring causal impact using Bayesian structural time-series models. Annals of Applied Statistics, 9(1), 247–274. https://doi.org/10.48550/arXiv.1506.00356
  • Cakaj, A., Lisiak-Zielińska, M., Khaniabadi, Y. O., & Sicard, P. (2023). Premature deaths related to urban air pollution in Poland. Atmospheric Environment, 301, 119723. https://doi.org/10.1016/j.atmosenv.2023.119723
  • Calderoni, L., Ferrara, M., Franco, A., & Maio, D. (2015). Indoor localization in a hospital environment using random forest classifiers. Expert Systems with Applications, 42(1), 125–134. https://doi.org/10.1016/j.eswa.2014.07.042
  • Cao, X., Liu, X., Hadiatullah, H., Xu, Y., Zhang, X., Cyrys, J., Zimmermann, R., & Adam, T. (2022). Investigation of COVID-19-related lockdowns on the air pollution changes in Augsburg in 2020, Germany. Atmospheric Pollution Research, 13(9), 101536. https://doi.org/10.1016/j.apr.2022.101536
  • Carnevale, C., Finzi, G., Pederzoli, A., Turrini, E., & Volta, M. (2018). An integrated data-driven/data assimilation approach for the forecast of PM10 levels in Northern Italy. In C. Mensink & G. Kallos (Eds.), Air Pollution Modeling and Its Application XXV (pp. 267–272). Springer. https://doi.org/10.1007/978-3-319-57645-9_36
  • Carrillo, P. E., Malik, A. S., & Yoo, Y. (2016). Driving restrictions that work? Quito’s "Pico y Placa" program. Canadian Journal of Economics/Revue Canadienne d'Économique, 49(4), 1536-1568. https://doi.org/10.1111/caje.12243
  • Chami, N., Li, Y., Weir, S., Wright, J. G., & Kantarevic, J. (2021). Effect of strict and soft policy interventions on laboratory diagnostic testing in Ontario, Canada: A Bayesian structural time series analysis. Health Policy, 125(2), 254–260. https://doi.org/10.1016/j.healthpol.2020.10.007
  • Chan, A. H. Y., Tomlin, A., Chan, E., Harrison, J., & Beyene, K. A. (2023). Effect of the COVID-19 pandemic on asthma exacerbations in New Zealand: An interrupted time series analysis. Journal of Allergy and Clinical Immunology: Global, 2(4), 100157. https://doi.org/10.1016/j.jacig.2023.100157
  • Chen, Y., Jin, G. Z., Kumar, N., & Shi, G. (2013). The promise of Beijing: Evaluating the impact of the 2008 Olympic Games on air quality. Journal of Environmental Economics and Management, 66(3), 424–443. https://doi.org/10.1016/j.jeem.2013.06.005
  • Davis, L. W. (2008). The effect of driving restrictions on air quality in Mexico City. Journal of Political Economy, 116(1), 38–81. https://doi.org/10.1086/529398
  • Davis, L. W. (2017). Saturday driving restrictions fail to improve air quality in Mexico City. Scientific Reports, 7, 41652. https://doi.org/10.1038/srep41652
  • de Vocht, F. (2016). Inferring the 1985–2014 impact of mobile phone use on selected brain cancer subtypes using Bayesian structural time series and synthetic controls. Environment International, 97, 100–107. https://doi.org/10.1016/j.envint.2016.10.019
  • European Environment Agency. (2024, June 10). European city air quality viewer. https://www.eea.europa.eu/themes/air/urban-air-quality/european-city-air-quality-viewer
  • Fenech, S., Aquilina, N. J., & Vella, R. (2021). COVID-19-related changes in NO₂ and O₃ concentrations and associated health effects in Malta. Frontiers in Sustainable Cities, 3, 631280. https://doi.org/10.3389/frsc.2021.631280
  • Feroze, N. (2020). Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian structural time series models. Chaos, Solitons & Fractals, 140, 110196. https://doi.org/10.1016/j.chaos.2020.110196
  • Filonchyk, M., Hurynovich, V., & Yan, H. (2021). Impact of COVID-19 lockdown on air quality in Poland, Eastern Europe. Environmental Research, 198, 110454. https://doi.org/10.1016/j.envres.2020.110454
  • Flaga-Maryańczyk, A., & Baran-Gurgul, K. (2022). The impact of local anti-smog resolution in Cracow (Poland) on the concentrations of PM₁₀ and BaP based on the results of measurements of the state environmental monitoring. Energies, 15(1), 56. https://doi.org/10.3390/en15010056
  • Gallego, F., Montero, J.-P., & Salas, C. (2013). The effect of transport policies on car use: Evidence from Latin American cities. Journal of Public Economics, 107, 47–62. https://doi.org/10.1016/j.jpubeco.2013.08.007
  • Gianacas, C., Liu, B., Kirk, M., Di Tanna, G. L., Belcher, J., Blogg, S., & Muscatello, D. J. (2023). Bayesian structural time series, an alternative to interrupted time series in the right circumstances. Journal of Clinical Epidemiology, 163, 102–110. https://doi.org/10.1016/j.jclinepi.2023.10.003
  • Główny Inspektorat Ochrony Środowiska. (2022). Stan środowiska w Polsce. https://www.gov.pl/attachment/8193fbd1-9302-4d30-a483-bde6c8f5564a (in Polish).
  • Główny Inspektorat Ochrony Środowiska. (2024, May). Database. https://powietrze.gios.gov.pl/pjp/archives (in Polish).
  • Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., & Hueglin, C. (2018). Random forest meteorological normalisation models for Swiss PM₁₀ trend analysis. Atmospheric Chemistry and Physics, 18(9), 6223–6239. https://doi.org/10.5194/acp-18-6223-2018
  • Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., & Carslaw, D. C. (2021). COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics, 21(5), 4169–4185. https://doi.org/10.5194/acp-21-4169-2021
  • Huang, H. N., Yang, Z., Wang, Y., Ou, C. Q., & Guan, Y. (2022). The use of generalized synthetic control method to evaluate air pollution control measures of G20 Hangzhou Summit. Frontiers in Public Health, 10, 1021177. https://doi.org/10.3389/fpubh.2022.1021177
  • Hudson, J., Fielding, S., & Ramsay, C. R. (2019). Methodology and reporting characteristics of studies using interrupted time series design in healthcare. BMC Medical Research Methodology, 19(1), 137. https://doi.org/10.1186/s12874-019-0777-x
  • Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(3), 1–22. https://doi.org/10.18637/jss.v027.i03
  • Instytut Meteorologii i Gospodarki Wodnej. (2024, May). Database. https://danepubliczne.imgw.pl/ (in Polish).
  • IQAir. (2024, June 10). World's most polluted countries & regions. https://www.iqair.com/gb/world-most-polluted-countries
  • Kleczkowski, P., & Kotarba, K. (2020). Analiza zmian jakości powietrza w Krakowie oraz województwie małopolskim w latach 2012–2020. Krakowski Alarm Smogowy. https://krakowskialarmsmogowy.pl/wp-content/uploads/2021/02/Analiza-zmian-jakosci-powietrza-w-Krakowie-oraz-wojewodztwie-malopolskim-w-latach-2012-2020.pdf (in Polish).
  • Leung, C., Konya, L., & Su, L. (2024). Postpandemic immunity debt of influenza in the USA and England: An interrupted time series study. Public Health, 227, 239–242. https://doi.org/10.1016/j.puhe.2023.12.009
  • Liu, Z., & Kong, H. (2021). New evidence of the effect of Beijing’s driving restriction and other Olympic-year policies on air pollution. The B.E. Journal of Economic Analysis & Policy, 21(1), 241–272. https://doi.org/10.1515/bejeap-2019-0295
  • Luo, J., Aschebrook-Kilfoy, B., & Olopade, C. O. (2022). Maps of solid-fuel use and household air pollution. The Lancet Global Health, 10(10), 1361–1362. https://doi.org/10.1016/S2214-109X(22)00386-2
  • Menz, T. (2011). Do people habituate to air pollution? Evidence from international life satisfaction data. Ecological Economics, 71, 211–219. https://doi.org/10.1016/j.ecolecon.2011.09.012
  • Owen, V. S., Sinnadurai, S., Morrissey, J., Colaco, H., Wickson, P., Dyjur, D., Redlich, M., O’Neill, B., Zygun, D. A., Doig, C. J., Harris, J., Zuege, D. J., Stelfox, H. T., Faris, P. D., Fiest, K. M., & Niven, D. J. (2024). Multicentre implementation of a quality improvement initiative to reduce delirium in adult intensive care units: An interrupted time series analysis. Journal of Critical Care, 81, 154524. https://doi.org/10.1016/j.jcrc.2024.154524
  • Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Ben Taieb, S., Bergmeir, C., Bessa, R. J., Bijak, J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Cyrino Oliveira, F. L., De Baets, S., Dokumentov, A., … Ziel, F. (2022). Forecasting: Theory and practice. International Journal of Forecasting, 38(3), 705–871. https://doi.org/10.1016/j.ijforecast.2021.11.001
  • Powdthavee, N., & Oswald, A. J. (2020). Is there a link between air pollution and impaired memory? Evidence on 34,000 English citizens. Ecological Economics, 169, 106485. https://doi.org/10.1016/j.ecolecon.2019.106485
  • Pérez-Suárez, R., & López-Menéndez, A. J. (2015). Growing green? Forecasting CO₂ emissions with Environmental Kuznets Curves and Logistic Growth Models. Environmental Science & Policy, 54, 428–437. https://doi.org/10.1016/j.envsci.2015.07.015
  • Regulation of the Minister of the Environment of 13 September 2012 on the assessment of substance levels in the air. Journal of Laws 2012, item 1032.
  • Rzeczpospolita. (2024, April 15). Polski Alarm Smogowy ostrzega: ostatnie kopciuchy znikną z Polski dopiero za kilkadziesiąt lat. https://www.rp.pl/srodowisko/art866951-polski-alarm-smogowy-ostrzega-ostatnie-kopciuchy-znikna-z-2 (in Polish).
  • Saha, L., Kumar, A., Kumar, S., Korstad, J., Srivastava, S., & Bauddh, K. (2022). The impact of the COVID-19 lockdown on global air quality: A review. Environmental Sustainability, 5, 5–23. https://doi.org/10.1007/s42398-021-00213-6
  • Sanduijav, C., Ferreira, S., Filipski, M., & Hashida, Y. (2021). Air pollution and happiness: Evidence from the coldest capital in the world. Ecological Economics, 187, 107085. https://doi.org/10.1016/j.ecolecon.2021.107085
  • Schaffer, A. L., Dobbins, T. A., & Pearson, S. A. (2021). Interrupted time series analysis using autoregressive integrated moving average (ARIMA) models: A guide for evaluating large-scale health interventions. BMC Medical Research Methodology, 21, 58. https://doi.org/10.1186/s12874-021-01235-8
  • Scott, S. L., & Varian, H. R. (2014). Predicting the present with Bayesian structural time series. International Journal of Mathematical Modelling and Numerical Optimisation, 5(1–2), 4–23. https://doi.org/10.1504/IJMMNO.2014.059942
  • Takyi, P. O., & Bentum-Ennin, I. (2021). The impact of COVID-19 on stock market performance in Africa: A Bayesian structural time series approach. Journal of Economics and Business, 115, 105968. https://doi.org/10.1016/j.jeconbus.2020.105968
  • Tong, W., Hong, H., Fang, H., Xie, Q., & Perkins, R. (2003). Decision forest: Combining the predictions of multiple independent decision tree models. Journal of Chemical Information and Computer Sciences, 43(2), 525–531. https://doi.org/10.1021/ci020058s
  • Trinh, N. T., Nordeng, H. M., Bandoli, G., Eberhard-Gran, M., & Lupattelli, A. (2022). Antidepressant and mental health care utilization in pregnant women with depression and/or anxiety: An interrupted time-series analysis. Journal of Affective Disorders, 308, 458–465. https://doi.org/10.1016/j.jad.2022.04.101
  • Turner, S. L., Karahalios, A., Forbes, A. B., Taljaard, M., Grimshaw, J. M., & McKenzie, J. E. (2021). Comparison of six statistical methods for interrupted time series studies: Empirical evaluation of 190 published series. BMC Medical Research Methodology, 21(1), 134. https://doi.org/10.1186/s12874-021-01306-w
  • Viard, V. B., & Fu, S. (2015). The effect of Beijing’s driving restrictions on pollution and economic activity. Journal of Public Economics, 125, 98–115. https://doi.org/10.1016/j.jpubeco.2015.02.00
  • Wang, L., Li, S., & Hu, L. I. (2023). Looking for the missing link: Driving restriction, car trips, and air pollution in Beijing. Cities, 132, 104055. https://doi.org/10.1016/j.cities.2022.104055
  • World Health Organization. (2024, June 20). Air pollution. https://www.who.int/health-topics/air-pollution#tab=tab_1
  • Wu, K., Kang, P., Tie, X., Gu, S., Zhang, X., Wen, X., Kong, L., Wang, S., Chen, Y., Pan, W., & Wang, Z. (2019). Evolution and assessment of the atmospheric composition in Hangzhou and its surrounding areas during the G20 Summit. Aerosol and Air Quality Research, 19(12), 2757–2769. https://doi.org/10.4209/aaqr.2018.12.0481
  • Zaręba, M., & Danek, T. (2022). Analysis of air pollution migration during COVID-19 lockdown in Krakow, Poland. Aerosol and Air Quality Research, 22, 210275. https://doi.org/10.4209/aaqr.210275
  • Zeng, J., Guijarro, M., & Carrilero-Castillo, A. (2020). A regression discontinuity evaluation of the policy effects of environmental regulations. Economic Research-Ekonomska Istraživanja, 33(1), 2993–3016. https://doi.org/10.1080/1331677X.2019.1699437
  • Zeng, J., Zhao, R., & Dai, W. (2021). Extending synthetic control method for multiple treated units: An application to environmental intervention. Economic Research-Ekonomska Istraživanja, 34(1), 311–330. https://doi.org/10.1080/1331677X.2020.1782764
  • Zhang, J., Zhong, C., & Yi, M. (2016). Did Olympic Games improve air quality in Beijing? Based on the synthetic control method. Environmental Economics and Policy Studies, 18, 21–39. https://doi.org/10.1007/s10018-015-0109-2
  • Zhang, Y., & Fricker, J. D. (2021). Quantifying the impact of COVID-19 on non-motorized transportation: A Bayesian structural time series model. Transport Policy, 103, 11–20. https://doi.org/10.1016/j.tranpol.2021.01.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b67c5f0c-49b1-410b-9397-15653a504f5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.