PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this work is to evaluate the propensity to brittle fracture of YSZ ceramics stabilized by the various amount of yttria, based on a study of changes in the microstructure, phase composition, and fracture micromechanisms. Design/methodology/approach: The series of 3YSZ, 4YSZ, and 5YSZ ceramic specimens were sintered in an argon atmosphere. Three sintering temperatures were used for each series: 1450°C, 1500°C, and 1550°C. Microhardness measurements were performed on a NOVOTEST TC-MKB1 microhardness tester. The configuration of the imprints and cracks formed was studied on an optical microscope Neophot-21. The fracture toughness of the material was estimated using both the Vickers indentation method and a single-edge notch beam (SENB) test performed under three-point bending at 20°C in air. The microstructure and morphology of the fracture surface of the specimens were studied using a scanning electron microscope Carl Zeiss EVO-40XVP. The chemical composition was determined using an INCA ENERGY 350 spectrometer. Findings: Peculiarities of changes in the microstructure, the morphology of specimens fracture surface, and mechanical characteristics of YSZ ceramic materials of different chemical and phase compositions sintered in a temperature range of 1450°C to 1550°C are found. Research limitations/implications: To study the actual behaviour of YSZ ceramic materials under operating conditions, it is necessary to evaluate their Young’s moduli, strength, microhardness, and fracture toughness in an operating environment of the corresponding parameters (temperature, pressure, etc.).Practical implications: Based on the developed approach to estimating the propensity to brittle fracture of the formed YSZ ceramic microstructure, it is possible to obtain YSZ ceramic material that will provide the necessary physical and mechanical properties of a wide variety of precision ceramic products. Originality/value: An approach to estimating the propensity to brittle fracture of YSZ ceramics stabilized by the various amount of yttria is proposed based on two methods of evaluating crack growth resistance of materials, namely, the Vickers indentation method and SENB method.
Rocznik
Strony
65--79
Opis fizyczny
Bibliogr. 83 poz.
Twórcy
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 Bandera St., Lviv, 79013, Ukraine
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences of Ukraine, 5 Naukova St., Lviv, 79060, Ukraine
Bibliografia
  • [1] M. Spyrka, R. Atraszkiewicz, L. Klimek, A new ceramic composite based on spherical aluminium oxide for auxiliary panels in high-temperature firing processes, Archives of Materials Science and Engineering 101/1 (2020), 5-14. DOI: https://doi.org/10.5604/01.3001.0013.9501
  • [2] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics, Journal of Achievements in Materials and Manufacturing Engineering 99/1 (2020) 14-41. DOI: https://doi.org/10.5604/01.3001.0014.1598
  • [3] Ye. Kharchenko, Z. Blikharskyy, V. Vira, B.D. Vasyliv, V.Ya. Podhurska, A. Kalynovskyy, V. Korendiy, Nanostructural changes in a Ni/NiO cermet during high-temperature reduction and reoxidation, in: O. Fesenko, L. Yatsenko (eds.), Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications, Springer Proceedings in Physics, vol. 246, Springer, Cham. 2021, 219-229. DOI: https://doi.org/10.1007/978-3-030-51905-6_17
  • [4] L.Ya. Ropyak, M.V. Makoviichuk, I.P. Shatskyi, I.M. Pritula, L.O. Gryn, V.O. Belyakovskyi, Stressed state of laminated interference-absorption filter under local loading, Functional Materials 27/3 (2020) 638-642. DOI: https://doi.org/10.15407/fm27.03.638
  • [5] V.M. Posuvailo, V.V. Kulyk, Z.A. Duriagina, I.V. Koval’chuck, M.M. Student, B.D. Vasyliv, The effect of electrolyte composition on the plasma electrolyte oxidation and phase composition of oxide ceramic coatings formed on 2024 aluminium alloy, Archives of Materials Science and Engineering 105/2 (2020) 49-55. DOI: https://doi.org/10.5604/01.3001.0014.5761
  • [6] T.S. Cherepova, H.P. Dmytrieva, O.I. Dukhota, M.V. Kindrachuk, Properties of nickel powder alloys hardened with titanium carbide, Materials Science 52/2 (2016) 173-179. DOI: https://doi.org/10.1007/s11003- 016-9940-2
  • [7] S.S. Savka, D.I. Popovych, A.S. Serednytski, Molecular dynamics simulations of the formation processes of zinc oxide nanoclusters in oxygen environment, in: O. Fesenko, L. Yatsenko (eds.), Nanophysics, Nanomaterials, Interface Studies, and Applications. NANO 2016. Springer Proceedings in Physics, vol. 195, Springer, Cham, 2017, 145-156. DOI: https://doi.org/10.1007/978-3-319-56422-7_11
  • [8] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage, Journal of Achievements in Materials and Manufacturing Engineering 98/2 (2020) 56-85. DOI: https://doi.org/10.5604/01.3001.0014.1481
  • [9] J. Milewski, J. Kupecki, A. Szczęśniak, N. Uzunow, Hydrogen production in solid oxide electrolyzers coupled with nuclear reactors, International Journal of Hydrogen Energy (2020) (available online). DOI: https://doi.org/10.1016/j.ijhydene.2020.11.217
  • [10] D.R. Clarke, C.G. Levi, Material design for the next generation thermal barrier coatings, Annual Review of Materials Research 33/1 (2003) 383-417. DOI: https://doi.org/10.1146/annurev.matsci.33.011403.113 718
  • [11] B. Vasyliv, V. Podhurska, O. Ostash, Preconditioning of the YSZ-NiO fuel cell anode in hydrogenous atmospheres containing water vapor, Nanoscale Research Letters 12 (2017) 265. DOI: https://doi.org/10.1186/s11671-017-2038-4
  • [12] M. Szota, A. Łukaszewicz, K. Machnik, The possibility to control the thickness of the oxide layer on the titanium Grade 2 by mechanical activation and heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 100/2 (2020) 70-77. DOI: https://doi.org/10.5604/01.3001.0014.3346
  • [13] G. Witz, V. Shklover, W. Steurer, S. Bachegowda, H.-P. Bossmann, Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by Rietveld refinement of X-ray powder diffraction patterns, Journal of the American Ceramic Society 90/9 (2007) 2935-2940. DOI: https://doi.org/10.1111/j.1551- 2916.2007.01785.x
  • [14] K. Buła, A. Palatyńska-Ulatowska, L. Klimek, Biodentine management and setting time with Vicat and Vickers evaluation; a survey-based study on clinicians’ experience, Archives of Materials Science and Engineering 103/2 (2020) 75-85. DOI: https://doi.org/10.5604/01.3001.0014.3358
  • [15] X.W. Zhou, Y.F. Shen, H.M. Jin, Effect of deposition mechanism and microstructure of nano-ceria oxide addition on Ni-P coating by pulse electrodeposition, Advanced Materials Research 326 (2011) 151-156. https://doi.org/10.4028/www.scientific.net/AMR.326.151
  • [16] B. Vasyliv, J. Milewski, V. Podhurska, T. Wejrza-nowski, V. Kulyk, J. Skibiński, V. Vira, Ł. Szabłowski, A. Szczęśniak, O. Dybiński, Study of the degradation of a fine-grained YSZ-NiO anode material during reduction in hydrogen and reoxidation in air, Applied Nanoscience (2021). DOI: https://doi.org/10.1007/s13204-021-01768-w
  • [17] O.V. Sukhova, Influence of mechanisms of structure formation of interfaces in composites on their properties, Metallofizika i Noveishie Tekhnologii 31/7 (2009) 1001-1012.
  • [18] V.G. Efremenko, Yu.G. Chabak, K. Shimizu, A.G. Lekatou, V.I. Zurnadzhy, A.E. Karantzalis, H. Halfa, V.A. Mazur, B.V. Efremenko, Structure refinement of high-Cr cast iron by plasma surface melting and post-heat treatment, Materials and Design 126 (2017) 278- 290. DOI: https://doi.org/10.1016/j.matdes.2017.04.022
  • [19] M. Kujawa, R. Suwak, L.A. Dobrzański, A. Gerle, B. Tomiczek, Thermal characterization of halloysite materials for porous ceramic preforms, Archives of Materials Science and Engineering 107/1 (2021) 5-15. DOI: https://doi.org/10.5604/01.3001.0014.8189
  • [20] I.B. Ivasenko, V.M. Posuvailo, M.D. Klapkiv, V.A. Vynar, S.I. Ostap’yuk, Express method for determining the presence of defects of the surface of oxide-ceramic coatings, Materials Science 45/3 (2009) 460-464. DOI: https://doi.org/10.1007/s11003-009-9191-6
  • [21] R.A. Miller, J.L. Smialek, R.G. Garlick, Phase stability in plasma sprayed, partially stabilized zirconia-yttria, in: A.H. Heuer, L.W. Hobbs (eds.), Advances in Ceramics, Vol. 3, Science and Technology of Zirconia I, American Ceramic Society, Columbus, 1981, 241- 253.
  • [22] J. Ilavsky, J.K. Stalick, J. Wallace, Thermal spray yttria-stabilized zirconia phase changes during annealing, Journal of Thermal Spray Technology 10/3 (2001) 497-501. DOI: https://doi.org/10.1361/105996301770349277
  • [23] J.R. Brandon, R. Taylor, Phase stability of zirconia-based thermal barrier coatings Part I, Zirconia-yttria alloys, Surface and Coatings Technology 46/1 (1991) 75-90. DOI: https://doi.org/10.1016/0257-8972(91)90151-L
  • [24] U. Schulz, Phase transformation in EB-PVD yttria partially stabilized zirconia thermal barrier coatings during annealing, Journal of the American Ceramic Society 83/4 (2000) 904-910. DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01292.x
  • [25] A. Azzopardi, R. Mevrel, B. Saint-Ramond, E. Olson, K. Stiller, Influence of aging on structure and thermal conductivity of Y-PSZ and Y-FSZ EB-PVD coatings, Surface and Coatings Technology 177-178 (2004) 131- 139. DOI: https://doi.org/10.1016/j.surfcoat.2003.08.073
  • [26] J. Katamura, T. Sakuma, Computer simulation of the microstructural evolution during the diffusionless cubic-to-tetragonal transition in the system ZrO2–Y2O3, Acta Materialia 46/5 (1998) 1569-1575. DOI: https://doi.org/10.1016/S1359-6454(97)00356-X
  • [27] H.G. Scott, Phase relationships in the zirconia-yttria system, Journal of Materials Science 10 (1975) 1527- 1535. DOI: https://doi.org/10.1007/BF01031853
  • [28] F. Kern, A. Gommeringer. Mechanical properties of 2Y-TZP fabricated from detonation synthesized powder, Ceramics 3/4 (2020) 440-452. DOI: https://doi.org/10.3390/ceramics3040037
  • [29] A. Kumar, P. Kumar, A.S. Dhaliwal, Structural studies of zirconia and yttria doped zirconia for analysing it phase stabilization criteria, IOP Conference Series: Materials Science and Engineering 1033 (2021) 012052. DOI: https://doi.org/10.1088/1757- 899X/1033/1/012052
  • [30] M.F.R.P. Alves, S. Ribeiro, P.A. Suzuki, K. Strecker, C. dos Santos, Effect of Fe2O3 addition and sintering temperature on mechanical properties and translucence of zirconia dental ceramics with different Y2O3 content, Materials Research 24/2 (2021) e20200402. DOI: https://doi.org/10.1590/1980-5373-MR-2020-0402
  • [31] K.-W. Jeong, J.-S. Han, G.-U. Yang, D.-J. Kim, Influence of preaging temperature on the indentation strength of 3Y-TZP aged in ambient atmosphere, Materials 14 (2021) 2767. DOI: https://doi.org/10.3390/ma14112767
  • [32] Y.-Y. Tsai, T.-M. Lee, J.-C. Kuo, Hydrothermal-aging-induced lattice distortion in yttria-stabilized zirconia using EBSD technique, Micron 145 (2021) 103053. DOI: https://doi.org/10.1016/j.micron.2021.103053
  • [33] S.H. Ji, D.S. Kim, M.S. Park, J.S. Yun, Sintering process optimization for 3YSZ ceramic 3D-printed objects manufactured by stereolithography, Nanomaterials 11/1 (2021) 192. DOI: https://doi.org/10.3390/nano11010192
  • [34] A. Gaddam, D.S. Brazete, A.S. Neto, B. Nan, J.M.F. Ferreira, Three-dimensional printing of zirconia scaffolds for load bearing applications: Study of the optimal fabrication conditions, Journal of the American Ceramic Society 104/9 (2021) 4368-4380. DOI: https://doi.org/10.1111/jace.17874
  • [35] S. Tao, J. Yang, M. Zhai, F. Shao, X. Zhong, H. Zhao, Y. Zhuang, J. Ni, W. Li, S. Tao, Thermal stability of YSZ thick thermal barrier coatings deposited by suspension and atmospheric plasma spraying, Crystals 10/11 (2020) 984. DOI: https://doi.org/10.3390/cryst10110984
  • [36] M. Rudolphi, M.C. Galetz, M. Schütze, Mechanical stability diagrams for thermal barrier coating systems, Journal of Thermal Spray Technology 30 (2021) 694- 707. DOI: https://doi.org/10.1007/s11666-021-01163-5
  • [37] Z. Fan, X. Sun, X. Zhuo, X. Mei, J. Cui, W. Duan, W. Wang, X. Zhang, L. Yang, Femtosecond laser polishing yttria-stabilized zirconia coatings for improving molten salts corrosion resistance, Corrosion Science 184 (2021) 109367. DOI: https://doi.org/10.1016/j.corsci.2021.109367
  • [38] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska- Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) 59-85. DOI: https://doi.org/10.5604/01.3001.0014.1525
  • [39] I.M. Andreiko, V.V. Kulyk, O.P. Ostash, Resistance of steels of railroad wheels to corrosion-fatigue fracture, Materials Science 47/5 (2012) 608-612. DOI: https://doi.org/10.1007/s11003-012-9434-9
  • [40] A. Sciazko, T. Shimura, Y. Komatsu, N. Shikazono, Ni-GDC and Ni-YSZ electrodes operated in solid oxide electrolysis and fuel cell modes, Journal of Thermal Science and Technology 16/1 (2021) JTST0013. DOI: https://doi.org/10.1299/jtst.2021jtst0013
  • [41] V.G. Efremenko, Yu.G. Chabak, A. Lekatou, A.E. Karantzalis, A.V. Efremenko, High-temperature oxidation and decarburization of 14.55 wt. pct Cr-cast iron in dry air atmosphere, Metallurgical and Materials Transactions A 47/2 (2016) 1529-1543. DOI: https://doi.org/10.1007/s11661-016-3336-7
  • [42] H. Nykyforchyn, H. Krechkovska, O. Student, O. Zvirko, Feature of stress corrosion cracking of degraded gas pipeline steels, Procedia Structural Integrity 16 (2019) 153-160. DOI: https://doi.org/10.1016/j.prostr.2019.07.035
  • [43] O.M. Romaniv, B.D. Vasyliv, Some features of formation of the structural strength of ceramic materials, Materials Science 34/2 (1998) 149-161. DOI: https://doi.org/10.1007/BF02355530
  • [44] A. Włodarczyk-Fligier, M. Polok-Rubiniec, J. Konieczny, Thermal analysis of matrix composite reinforced with Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 100/1 (2020) 5-11. DOI: https://doi.org/10.5604/01.3001.0014.1957
  • [45] S. Buchaniec, A. Sciazko, M. Mozdzierz, G. Brus, A novel approach to the optimization of a solid oxide fuel cell anode using evolutionary algorithms, IEEE Access 7 (2019) 34361-34372. DOI: https://doi.org/10.1109/ACCESS.2019.2904327
  • [46] O.M. Romaniv, I.V. Zalite, V.M Simin’kovych, O.N. Tkach, B.D. Vasyliv, Effect of the concentration of zirconium dioxide on the fracture resistance of Al2O3– ZrO2 ceramics, Materials Science 31/5 (1996) 588-594. DOI: https://doi.org/10.1007/BF00558793
  • [47] A.S. Buyakov, Yu.A. Mirovoy, A.Yu. Smolin, S.P. Buyakova, Increasing fracture toughness of zirconia-based composites as a synergistic effect of the introducing different inclusions, Ceramics Interna-tional 47/8 (2021) 10582-10589. DOI: https://doi.org/10.1016/j.ceramint.2020.12.170
  • [48] P. Khajavi, P.V. Hendriksen, J. Chevalier, L. Gremillard, H.L. Frandsen, Improving the fracture toughness of stabilized zirconia-based solid oxide cells fuel electrode supports: Effects of type and concentration of stabilizer(s), Journal of the European Ceramic Society 40/15 (2020) 5670-5682. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.05.042
  • [49] A.D. Ivasyshyn, B.D. Vasyliv, Effect of the size and form of specimens on the diagram of growth rates of fatigue cracks, Materials Science 37/6 (2001) 1002- 1004. DOI: https://doi.org/10.1023/A:1015669913601
  • [50] B.D. Vasyliv, Initiation of a crack from the edge of a notch with oblique front in specimens of brittle materials, Materials Science 38/5 (2002) 724-728. DOI: https://doi.org/10.1023/A:1024222709514
  • [51] Y. Komatsu, A. Sciazko, N. Shikazono, Isostatic pressing of screen printed nickel-gadolinium doped ceria anodes on electrolyte-supported solid oxide fuel cells, Journal of Power Sources 485 (2021) 229317. DOI: https://doi.org/10.1016/j.jpowsour.2020.229317
  • [52] B.D. Vasyliv, Improvement of the electric conductivity of the material of anode in a fuel cell by the cyclic redox thermal treatment, Materials Science 46/2 (2010) 260- 264. DOI: https://doi.org/10.1007/s11003-010-9282-4
  • [53] I. Danilenko, G. Lasko, I. Brykhanova, V. Burkhovetski, L. Ahkhozov, The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of Al2O3 and NiO, Nanoscale Research Letters 12 (2017) 125. DOI: https://doi.org/10.1186/s11671-017-1901-7
  • [54] V. Podhurska, B. Vasyliv, Influence of NiO reduction on microstructure and properties of porous Ni–ZrO2 substrates, Proceedings of the 2012 IEEE International Conference on Oxide Materials for Electronic Engineering “OMEE”, Lviv, 2012, 293-294. DOI: https://doi.org/10.1109/OMEE.2012.6464761
  • [55] ASTM E 384-11. Standard test method for Knoop and Vickers hardness of materials, ASTM International, 2011. DOI: https://doi.org/10.1520/E0384-11
  • [56] ASTM С 1327-03. Standard test method for Vickers indentation hardness of advanced ceramics, ASTM International, 2003. DOI: https://doi.org/10.1520/C1327-03
  • [57] O.P. Ostash, V.V. Kulyk, T.M. Lenkovskiy, Z.A. Duriagina, V.V. Vira, T.L. Tepla, Relationships between the fatigue crack growth resistance characteristics of a steel and the tread surface damage of railway wheel, Archives of Materials Science and Engineering 90/2 (2018) 49-55. DOI: https://doi.org/10.5604/01.3001.0012.0662
  • [58] R.F. Cook, G.M. Pharr, Direct observation and analysis of indentation cracking in glasses and ceramics, Journal of the American Ceramic Society, 73/4 (1990) 787-817. DOI: https://doi.org/10.1111/j.1151- 2916.1990.tb05119.x
  • [59] A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, M. Nganbe, Instrumented and Vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor, Journal of Materials Science and Technology 31/8 (2015) 773-783. DOI: https://doi.org/10.1016/j.jmst.2015.06.005
  • [60] J.W. Adams, R. Ruh, K.S. Mazdiyasni, Young’s modulus, flexural strength, and fracture of yttria-stabilized zirconia versus temperature, Journal of the American Ceramic Society 80/4 (1997) 903-908. DOI: https://doi.org/10.1111/j.1151-2916.1997.tb02920.x
  • [61] H.A. Shabri, M.H.D. Othman, M.A. Mohamed, T.A. Kurniawan, S.M. Jamil, Recent progress in metal-ceramic anode of solid oxide fuel cell for direct hydrocarbon fuel utilization: A review, Fuel Processing Technology 212 (2021) 106626. DOI: https://doi.org/10.1016/j.fuproc.2020.106626
  • [62] B.R. Lawn, Fracture of brittle solids, Second Edition, Cambridge University Press, Cambridge, 1993. DOI: https://doi.org/10.1017/CBO9780511623127
  • [63] B.R. Lawn, M.V. Swain, Microfracture beneath point indentations in brittle solids, Journal of Materials Science 10/1 (1975) 113-122. DOI: https://doi.org/10.1007/BF00541038
  • [64] B.R. Lawn, E.R. Fuller, Equilibrium penny-like cracks in indentation fracture, Journal of Materials Science 10/12 (1975) 2016-2024. DOI: https://doi.org/10.1007/BF00557479
  • [65] A.G. Evans, E.A. Charles, Fracture toughness determinations by indentation, Journal of the American Ceramic Society 59/7-8 (1976) 371-372. DOI: https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
  • [66] K. Tanaka, Elastic/plastic indentation hardness and indentation fracture toughness: The inclusion core model, Journal of Materials Science 22/4 (1987) 1501- 1508. DOI: https://doi.org/10.1007/BF01233154
  • [67] K. Niihara, R. Morena, D.P.H. Hasselman, Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios, Journal of Materials Science Letters 1/1 (1982) 13-16. DOI: https://doi.org/10.1007/BF00724706
  • [68] K. Niihara, A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, Journal of Materials Science Letters 2/5 (1983) 221- 223. DOI: https://doi.org/10.1007/BF00725625
  • [69] I. Danilenko, F. Glazunov, T. Konstantinova, I. Yashchyshyn, V. Burkhovetski, G. Volkova, Effect of Ni/NiO particles on structure and crack propagation in zirconia based composites, Advanced Materials Letters 5/8 (2014) 465-471. DOI: https://doi.org/10.5185/amlett.2014.amwc1040II
  • [70] O.N. Grigoriev, V.B. Vinokurov, T.V. Mosina, L.M. Melakh, N.D. Bega, A.V. Koroteev, L.I. Klimenko, A.V. Stepanenko, Kinetics of shrinkage, structurization, and the mechanical characteristics of zirconium boride sintered in the presence of activating additives, Powder Metallurgy and Metal Ceramics 55/11-12 (2017) 676-688. DOI: https://doi.org/10.1007/s11106-017-9855-y
  • [71] G.A. Gogotsi, S.N. Dub, E.E. Lomonova, B.I. Ozersky, Vickers and Knoop indentation behaviour of cubic and partially stabilized zirconia crystals, Journal of the European Ceramic Society 15/5 (1995) 405-413. DOI: https://doi.org/10.1016/0955-2219(95)91431-M
  • [72] M.A. Aswad, Comparison of the fracture toughness of high temperature ceramic measured by digital image correlation and indentation method, Journal of University of Babylon 22/4 (2014) 927-937. Available at: https://www.iasj.net/iasj?func=article&aId=99010
  • [73] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, Direct crack measurement, Journal of the American Ceramic Society 64/9 (1981) 533-538. DOI: https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  • [74] B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/plastic indentation damage in ceramics: The median/radial crack system, Journal of the American Ceramic Society 63/9-10 (1980) 574-581. DOI: https://doi.org/10.1111/j.1151-2916.1980.tb10768.x
  • [75] J.E. Blendell, The origins of internal stresses in polycrystalline alumina and their effects on mechanical properties, Cambridge University Press, Cambridge, 1979.
  • [76] J. Lankford, Indentation microfracture in the Palmqvist crack regime: implications for fracture toughness evaluation by the indentation method, Journal of Materials Science Letters 1/11 (1982) 493-495. DOI: https://doi.org/10.1007/BF00721938
  • [77] B. Vasyliv, V. Kulyk, Z. Duriagina, D. Mierzwinski, T. Kovbasiuk, T. Tepla, Estimation of the effect of redox treatment on microstructure and tendency to brittle fracture of anode materials of YSZ-NiO(Ni) system, Eastern-European Journal of Enterprise Technologies 6/12(108) (2020) 67-77. DOI: https://doi.org/10.15587/1729-4061.2020.218291
  • [78] ASTM E 399-20A. Standard test method for linear-elastic plane-strain fracture toughness of metallic materials, ASTM International, 2020. DOI: https://doi.org/10.1520/E0399-20A
  • [79] ASTM С 1421-18. Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature, ASTM International, 2018. DOI: https://doi.org/10.1520/C1421-18
  • [80] J. Kübier, Fracture toughness of ceramics using the SEVNB method: From a preliminary study to a standard test method, in: J. Salem, G. Quinn, M. Jenkins (eds.), Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ASTM International, West Conshohocken, 2002, 93-106. DOI: https://doi.org/10.1520/STP10473S
  • [81] Z. Peng, J. Gong, H. Miao, On the description of indentation size effect in hardness testing for ceramics: Analysis of the nanoindentation data, Journal of the European Ceramic Society 24/8 (2004) 2193-2201. DOI: https://doi.org/10.1016/S0955-2219(03)00641-1
  • [82] I.M. Spiridonova, E.V. Sukhovaya, S.B. Pilyaeva, O.G. Bezrukavaya, The use of composite coatings during metallurgical equipment parts repair, Metallurgicheskaya i Gornorudnaya Promyshlennost 3 (2002) 58-61.
  • [83] L.Ya. Ropyak, I.P. Shatskyi, M.V. Makoviichuk, Influence of the oxide-layer thickness on the ceramic-aluminium coating resistance to indentation, Metallofizika i Noveishie Tekhnologii 39/4 (2017) 517-524. DOI: https://doi.org/10.15407/mfint.39.04.0517
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b67bc20f-6072-429d-95e7-e508aceffa04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.