Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Oil palm wood is biomass waste with a high abundance of energy which has the potential to be used as a raw material in the production of biopellet as an alternative energy source. However, oil palm wood possesses low density and calorific value. This study aims to evaluate the characteristics of biopellet formed through the hybridization of oil palm wood and natural activated charcoal. The natural activated charcoal filler was made from coconut shell and tapioca starch was used as a binder at a ratio of 150 g. Hybrid biopellet were produced using a roller wood machine with varying amounts of natural activated charcoal content: 200 g, 300 g, and 400 g per kg of raw material. The quality of the hybrid biopellet was evaluated based on the SNI 8021-2014 standards, including density, moisture content, ash content, volatile matters, fixed carbon, and calorific value. The results show that the hybridization of natural activated charcoal significantly influences the quality of the biopellets. Overall, the characteristics of the hybrid biopellet have met the SNI 8021-2014 standards, except for the ash content. The HBC-400 hybrid biopellet type exhibited the highest quality, with a density of 0.886 g/cm3, moisture content of 7.33%, ash content of 2.22%, fixed carbon of 62.12%, and calorific value of 4822 Cal/g. Oil palm wood and natural activated charcoal-based hybrid biopellet have the potential to be used as a renewable alternative energy source.
Czasopismo
Rocznik
Tom
Strony
80--91
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
autor
- Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, 24301, Indonesia
Bibliografia
- 1. Abas, N., Kalair, A., Nasrullah, K. 2015. Review of fossil fuels and future energy technologies. Futures, 69, 31–49.
- 2. Abdurrahman, R., Radja, M.A.S., Abrar, R., Lega, P.U. 2020. Bio-pellets manufacture from palm fruit skin as renewable alternative fuels in updraft type gasification furnaces. International Journal of Design & Nature and Ecodynamics, 15(6), 913–20.
- 3. Ajimotokan, H.A. 2019. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African, 6, e00202.
- 4. Asrofi, M., Sapuan, S.M,, Ilyas, R.A., Ramesh, M. 2021. Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: effect of time duration of ultrasonication (bath-type). Proc. Materials Today: Proceedings, 46, 1626–30.
- 5. Badan Standarisasi Nasional. 2014. Pelet kayu (SNI 8021: 2014). Jakarta.
- 6. Badri, M., Dodi, S.A., Iwan, K. 2022. Effects of oil palm trunk (OPT), peat and coconut shell charcoal on the characteristics of biomass pellet. Journal of Ocean, Mechanical and Aerospace-science and engineering, 66(1), 1–7.
- 7. Cahyani, N., Andi, D.Y., Kidung, T.P., Gustan, P. 2023. Characteristics of bio pellets from spent cof- fee grounds and pinewood charcoal based on composition and grinding method. Journal of the Korean Wood Science and Technology, 51(1), 23–37.
- 8. Ciupek, B., Karol, G. 2020. Concentration of nitrogen oxides when burning wood pellets of various origins. Journal of Ecological Engineering, 21(5), 229–233.
- 9. Ciupek, B., Judt W., Urbaniak, R., Kłosowiak, R. 2019. The emission of carbon monoxide and nitrogen oxides from boilers supplied by a pellet under the influence of changes in the air-fuel equivalence ratio. Journal of Ecological Engineering, 20(10), 34–38.
- 10. Colantoni, A. 2021. Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process. Scientific Reports, 11(1), 1–14.
- 11. Dungani, R. 2018. Biomaterial from oil palm waste: properties, characterization and applications. Palm Oil, 31.
- 12. El-Sayed, Saad, A., Khairy, M. 2018. An experimental study of combustion and emissions of wheat straw pellets in high-temperature air flows. Combustion Science and Technology, 190(2), 222–51.
- 13. Ginting, A., Indra, M., Jannifar, S., Mawardi. 2019. Effectiveness of Die hole on wood pellet density quality improvement. Proc. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12166.
- 14. Hambali, E., Rivai, M. 2017. The potential of palm oil waste biomass in Indonesia in 2020 and 2030. Proc. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12050.
- 15. Holechek, Jerry, L., Hatim, M.E.G., Mohammed. N.S., Raul, V. 2022. A global assessment: can renewable energy replace fossil fuels by 2050?. Sustainability, 14(8), 4792.
- 16. Iqbaldin, Mohd, M.N. 2013. Properties of coconut shell activated carbon. Journal of Tropical Forest Science, 497–503.
- 17. Jeguirim, M., Limousy, L., Dutournie, P. 2014. Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chemical Engineering Research and Design, 92(10), 1876–82.
- 18. Kansai, N., Nichakorn, C., Nuta, S. 2018. Carbonized briquettes as a tool for adding value to waste from rain tree (samanea saman) and coffee ground/tea waste. Engineering Journal, 22(6), 47–63.
- 19. Kawale, Harshal, D., Nanda, K. 2020. Comparative study on pyrolysis of delonix regia, pinewood sawdust and their co-feed for plausible bio-fuels production. Energy, 203, 117921.
- 20. Kongprasert, Nattapong, Pilada, W., Anuwat, J. 2019. Charcoal briquettes from madan wood waste as an alternative energy in thailand. Proc. Procedia Manufacturing, 30, 128–35.
- 21. Lee, Chang-Yeong. 2020. Exploration of alternative woody biomass for manufacturing biopellets. Journal of Korea Technical Association of the Pulp and Paper Industry, 52(6), 34–46.
- 22. Lee, Hyoung-woo, Soon-bae, K. 2020. Study on the estimation of proper compression ratios for korean domestic wood species by single pellet press. Journal of the Korean Wood Science and Technology, 48(4), 450–57.
- 23. Li, Minqi. 2017. World energy 2017–2050: annual report. Department of Economics, University of Utah.
- 24. Macák, Miroslav, Ladislav, N., Juraj, M., Affan, O.H. 2015. Assessing the effect of pressing matrix diameter and compacting pressure on density and durability of pellets. Acta Technologica Agriculturae, 18(1), 14–17.
- 25. Martinez, Clara, L.M. 2019. Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass and Bioenergy, 123, 70–77.
- 26. Mawardi, I., Nurdin, Fakhriza, Smsul, R., Sri, a., Muhammad, F., Ramadhansyah, P.J. 2023. Optimization of particle size and ramie fiber ratio on hybrid bio panel production from oil palm trunk as thermal insulation materials. Journal of Ecological Engineering, 24(2), 39–49.
- 27. Mawardi, I., Sri, aq., Muhammad, F., Samsul, R. 2021a. An investigation of thermal conductivity and sound absorption from binderless panels made of oil palm wood as bio-insulation materials. Results in Engineering, 100319.
- 28. Mawardi, I., Sri, A., Muhammad, F., Samsul, R. 2021b. Characterization of thermal bio-insulation materials based on oil palm wood: the effect of hybridization and particle size. Polymers, 13(19), 3287.
- 29. Nasrin, Abu, B. 2022. Production and characterization of low-ash empty fruit bunches pellets as a solid biofuel. BioEnergy Research, 15(1), 517–29.
- 30. Odugbesan, J.A., Husan, R. 2020. Relationship among economic growth, energy consumption, co2 emission, and urbanization: evidence from mint countries. Sage Open, 10(2), 1-15.
- 31. Pahlevi, R. 2022. 10 negara konsumen energi fosil terbesar.
- 32. Permatasari, Rosyida, Muthia, A., Elisanti, S.G. 2022. Characteristic tests of bio-pellets made of calliandra wood as a renewable alternative fuel. International Journal of Electrical, Energy and Power System Engineering, 5(2), 45–49.
- 33. Pertanian, Direktorat Jenderal Perkebunan Kementerian. 2018. Statistik perkebunan indonesia 2017-2019 (kelapa sawit). Jakarta: Direktorat Jenderal Perkebunan Kementerian Pertanian.
- 34. Rusdianasari. 2023. Characterization of empty fruit bunch of palm oil as co-firing biomass feedstock. Asian Journal of Applied Research for Community Development and Empowerment, 7(1), 74–78.
- 35. Selvarajoo, Anurita, Chi, W.l., Dooshyantsingh, O., Khalid, H.O.A. 2021. Bio-pellets from empty fruit bunch and durian rinds with cornstarch adhesive for potential renewable energy. Materials Science for Energy Technologies, 4, 242–48.
- 36. Subagyo, Asmanto, Tuasikal, M.A. 2015. Potensi tapioka sebagai agen biosizing pada benang kapas. Dinamika Kerajinan dan Batik: Majalah Ilmiah, 32(1), 9–22.
- 37. Waheed, Rida, Sahar, S., Chen, W. 2019. The survey of economic growth, energy consumption and carbon emission. Energy Reports, 5, 1103–15.
- 38. Wistara, Nyoman, J. 2017. Effect of bark content and densification temperature on the properties of oil palm trunk-based pellets. Journal of the Korean Wood Science and Technology, 45(6), 671–81.
- 39. Yuliah, Y., Kartawidjaja, M., Suryaningsih, S., Ulfi, K. 2017. Fabrication and characterization of rice husk and coconut shell charcoal based biobriquettes as alternative energy source. Proc. IOP Conference Series: Earth and Environmental Science, IOP Publishing, 12021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b67ad61e-faee-48e0-a074-0db0c546a5ac