PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

An Influence of Directional Microphones on the Speech Intelligibility and Spatial Perception by Cochlear Implant Users

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study is to assess the hearing performance of cochlear implant users in three device microphone configurations: omni-directional, directional, and beamformer (BEAMformer two-adaptive noise reduction system), in localization and speech perception tasks in dynamically changing listening environments. Seven cochlear implant users aided with Cochlear CM-24 devices with Freedom speech processor participated in the study. For the localization test in quiet and in background noise, subjects demonstrated significant differences between different microphone settings. Confusion matrices showed that in about 70% cases cochlear implant subjects correctly localized sounds within a horizontal angle of 30–40◦ (±1◦ loudspeaker apart from signal source). However localization in noise was less accurate as shown by a large number of considerable errors in localization in the confusion matrices. Average results indicated no significant difference between three microphone configurations. For speech presented from the front 3 dB SNR improvements in speech intelligibility in three subjects can be observed for beamforming system compared to directional and omni-directional microphone settings. The benefits of using different microphone settings in cochlear implant devices in dynamically changing listening conditions depend on the particular sound environment.
Rocznik
Strony
81--92
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Biophysics, Poznan University of Medical Science, Fredry 10, 61-701 Poznań, Poland
autor
  • Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals & Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
autor
  • Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
autor
  • College of Public Health, Department of Biostatistics, University of Iowa Hospitals & Clinics, 145N. Riverside Drive, Iowa City, IA 52242, USA
Bibliografia
  • 1. Boothroyd A., Hanin L., Hnath T. (1985), A sentence tests of speech perception: Reliability, set equivalence, and short-term learning, City University of New York, Speech and Hearing Sciences Research Center, New York.
  • 2. Brockmeyer A.M., Potts L.G. (2011), Evaluation of Different Signal Processing Options in Unilateral and Bilateral Cochlear Freedom Implant Recipients Using RSpaceTM Background Noise, J. Am. Acad. Audiol., 26, 65–80.
  • 3. Chung K., Zeng F.-G., Acker K.N. (2006), Effect of directional microphone and adaptive multi-channel noise reduction algorithm on cochlear implant performance, J. Acoust. Soc. Am., 120, 4, 2216–2227.
  • 4. Chung K., Zeng F.-G. (2009), Using adaptive directional microphones to enhance cochlearimplant performance, Hear. Res., 25, 27–37.
  • 5. Dunnc C.C., Tyler R.S., Witt S.A. et al. (2004), Frequency and Electrode Contributions to Localization in Bilateral Cochlear Implants, [in:] Cochlear Implants, Miyamoto R. [Ed.], pp. 443–446, Elsevier, Amsterdam.
  • 6. Dunn C.C., Tyler S.R., Oakley S.A. et al. (2008), Comparison of Speech Recognition and Localization Performance In Bilateral and Unilateral Cochlear Implant Users Matched on Duration of Deafness and Age at Implantation, Ear Hear, 29, 3, 352–359.
  • 7. Greenberg Z.E., Zurek P.M. (1992), Evaluation of an adaptive beamforming method for hearing aids, J. Acoust. Soc. Am., 91, 1662–1676.
  • 8. Goldsworthy R.L. (2005), Noise reduction Algorithms and Performance Metrics for Improving Speech Reception in Noise by Cochlear-Implant Users, MIT, Cambridge.
  • 9. Hawkins D.B., YaculloW.S. (1984), Signal-to-noise ratio advantages of binaural Hearing aids and directional microphones under different levels of reverberation, J. Speech Disord., 49, 278–286.
  • 10. Hochberg I., Boothroyd A., Weiss M. et al. (1992), Effects of noise and noise suppression on speech perception by cochlear implant users, Ear Hear, 13, 263–271.
  • 11. Holden L.K., Skinner M.W., Holden T.A. (1995), Comparison of the normal and noise- suppression settings on the spectra 22 speech processor of the Nucleus 22-channel cochlear implant system, Am. J. Audiol., 4, 55–58.
  • 12. Hu Y., Loizou P.C., Li N. et al. (2007), Use of a sigmoidal-shaped function for noise attenuation in cochlear implants, J. Acoust. Soc. Am., 122, EL128–EL134.
  • 13. Hu Y., Loizou P.C. (2007), A comparative intelligibility study of single-microphone noise reduction algorithms, J. Acoust. Soc. Am., 122, 3, 1777–1786.
  • 14. Kochkin S. (2000), MarkeTrak V: Why my hearing aids are in the drawer: The consumer’s perspective, Hearing Review, 53, 34–41.
  • 15. Kokkinakis K., Loizou P.C. (2010), Multi-microphone adaptive noise reduction strategies for coordinated stimulation in bilateral cochlear implant devices, J. Acoust. Soc. Am., 127, 5, 3136–3144.
  • 16. Kokkinakis K., Azimi B., Hu Y. et al. (2012), Single and Multiple Microphone Noise Reduction strategies in Cochlear Implants, Trends Amplify, 16, 2, 102–116.
  • 17. Kompis M., Dillier N. (1994), Noise reduction for hearing aids: Combining directional microphones with an adaptive beamformer, J. Acoust. Soc. Am., 96, 1910–1913.
  • 18. Kompis M., Bettler M., Vischwe M. et al. (2004), Bilateral cochlear implantation and directional multi-microphone systems, [in:] Cochlear Implants, Miyamoto R. [Ed.], International Congress Series (pp. 447–450), Elsevier, Amsterdam, The Netherlands.
  • 19. Kompis M., Bertram M., Francois J. et al. (2008), A Two-Microphone Noise Reduction System for Cochlear Implant Users with Nearby Microphones – Part I: Signal Processing Algorithm Design and Development, EURASIP Journal on Advances in Signal Processing, 1–9.
  • 20. Loizou P.C., Lobo A., Hu Y. (2005), Subspace algorithms for noise reduction in cochlear implants (L), J. Acoust. Soc. Am., 118, 5, 2791–2793.
  • 21. McCreery R.W., Venediktov R.A., Coleman J.J. et al. (2012), An Evidence – Based Systematic Review of Directional Microphones and Digital Noise Reduction Hearing Aids in School-Age Children with Hearing Loss, Am. J. Audiol., PMID: 22858614.
  • 22. M¨uller J., Sch¨one J., Helms J. (2002), Speech understanding in quiet and noise in bilateral users of the MED-EL COMBI 40/40+ cochlear implant system, Ear Hear, 23, 3, 198–206.
  • 23. Plomp R. (1994), Noise, amplification, and compression: Considerations of 3 main issues in hearing – aid design, Ear Hear, 15, 2–12.
  • 24. Qin M.K., Oxenham A.J. (2003), Effects of simulated cochlear implant processing on speech reception in fluctuating maskers, J. Acoust. Soc. Am., 114, 446–454.
  • 25. Sapar A., Dorman M.F., Loiselle L.H. (2007), Performance of patients using different cochlear systems: effects of input dynamic range, Ear Hear, 28, 260–275.
  • 26. Schafer E.C., Thibodeau L.M. (2004), Speech recognition abilities of adults using cochlear implants with FM systems, J. Am. Acad. Audiol., 15, 678–691.
  • 27. Spriet A., Van Deun L., Eftaxiadis K. et al. (2007), Speech Understanding in background noise with the two-microphone adaptive beamformer BEAM TM in the Nucleus FreedomTM Cochlear Implant system, Ear Hear, 28, 1, 62–72.
  • 28. Stickney G.S., Zeng F.-G., Litovsky R. et al. (2004), Cochlear implant speech recognition with speech masker, J. Acoust. Soc. Am., 116, 2, 1081–1091.
  • 29. Swanson B., Van Baelen E., Janessens M. et al. (2007), Cochlear Implant signal Processing ICs, Custom Integrated Circuits Conference, CICC’07, IEEE, pp. 437–442.
  • 30. Tillman T.W., Carhart R. (1966), An expanded test for speech discrimination utilizing CNC monosyllabic words: Northwestern University Auditory Test No. 6, (Tech. Rep. No. SAM TR-66-55), Brooks Air Force Base, TX: USAF School of Aerospace Medicine.
  • 31. Tyler R.S., Kelsay D. (1990), Advantages and disadvantages reported by some of the better cochlear implant patients, Am. J. Otolaryngol., 11, 4, 282–289.
  • 32. Tyler R.S., Baker L.J., Armsrong Bednall G. (1983), Difficulties experienced by hearing aid candidates and hearing aid users, Br. J. Audiol., 17, 3, 191–201.
  • 33. Tyler R.S., Noble W., Dunn C.C. et al. (2006), Some benefits and limitations of binaural cochlear implants and our ability to measure them, Int. J. Audiol., 45 (Suppl 1), 113–119.
  • 34. Tyler R.S., Preece J., Wilson B. et al. (2002a), Distance, localization and speech perception pilot studies with bilateral cochlear implants, [in:] Cochlear Implants – An Update, T. Kubo, Y. Takahashi, and T. Iwaki [Eds.], The Hague, pp. 517–522, Kugler Publications.
  • 35. Tyler R.S., Gantz B.J., Rubinstein J.T. et al. (2002b), Three-month results with bilateral cochlear implants, Ear Hear, 23 (Suppl 1), 80S–89S.
  • 36. Tyler R.S., Parkinson A.J., Wilson B.S. et al. (2002c), Patients utilizing a hearing aid and a cochlear implant: Speech perception and localization, Ear Hear, 23, 2, 98–105.
  • 37. Tyler R.S., Dunn C.C., Witt S.A. et al. (2007), Speech Perception and Localization with Adults with Bilateral Sequential Cochlear Implants, Ear Hear, 28, 2, 86S–90S.
  • 38. Tyler R.S., Witt S.A., Dunn C.C. et al. (2010), Initial development of a spatially separated speech-in-noise and localization training program, J. Am. Acad. Audiol., 21, 6, 390–403.
  • 39. Van Hoesel R.J., Clark G.M. (1995), Evaluation of a portable two-microphone adaptive beamforming speech processor with cochlear implant patients, J. Acoust. Soc. Am., 97, 4, 2498–2503.
  • 40. Van Den Bogaert T., Dolco S., Wouters J. et al. (2009), Speech enhancements with multichannel Winer filter techniques in multimicrophone binaural hearing aids, J. Acoust. Soc. Am., 125, 360–371.
  • 41. Weiss M. (1993), Effect of noise and noise reduction processing on the operation of the Nucleus-22 cochlear implant processor, JRRD, 30, 117–128.
  • 42. Wouters J., Van Den Berghe J. (2001), Speech recognition in noise for cochlear implantees with a two-microphone monaural adaptive noise reduction system, Ear Hear, 22, 420–430.
  • 43. Wolfe J., Parkinson A., Schafer E.C. et al. (2012), Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study, Otol. Neurotol., 33, 4, 553–560.
  • 44. Wolfe J., Schafer E.C., Heldner B. et al. (2009), Evaluation of speech recognition in noise with cochlear implants and dynamic FM, J. Am. Acad. Audiol., 20, 409–421.
  • 45. Yang L., Fu Q. (2004), Spectral subtraction-based speech enhancement for cochlea implant patients in background noise, J. Acoust. Soc. Am., 117, 1001–1004.
  • 46. ICRA (1997), CD ICRA Noise Signals Version 0.3, International Collegium of Rehabilitative Audiology, Hearing Aid Clinical Test Environment Standardization work Group, February 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b66ee4b8-f780-4028-9056-36681dc2f42c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.