Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, the problem of modeling of mixed mode cracking in concrete structures is addressed within the context of a constitutive law with embedded discontinuity (CLED). This approach, which was originally developed for describing the propagation of localized deformation in a “smeared” sense, is enhanced here to model a discrete nature of crack propagation. The latter is achieved by coupling the CLED approach with the level-set method, which is commonly used within the framework of Extended Finite Element (XFEM). Numerical simulations of experimental tests conducted at Delft University, which involve four-point bending of a notched concrete beam under the action of two independent actuators, are presented. The results based on enhanced CLED approach are directly compared with XFEM simulations. The predictions from both these methodologies are quite consistent with the experimental data, thereby giving advantage to CLED scheme in view of its simplicity in the numerical implementation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
27--32
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
- McMaster University, Hamilton, Canada
autor
- McMaster University, Hamilton, Canada
Bibliografia
- [1] PIETRUSZCZAK S., MROZ Z., Finite Element Analysis of Deformation of Strain-Softening Materials, Int. J. Numer Meth. Engng., 1981, Vol. 17, 327–334.
- [2] PIETRUSZCZAK S., On Homogeneous and Localized Deformation in Water-Infiltrated Soils, International Journal of Damage Mechanics, 1999, Vol. 8, 233–253.
- [3] NGO D., SCORDELIS A.C., Finite Element Analysis of Reinforced Concrete Beams, ACI Journal Proceedings, 1967, Vol. 64, 152–163.
- [4] NILSON A.H., Nonlinear Analysis of Reinforced Concrete by the Finite Element Method, ACI Journal Proceedings, 1968, Vol. 65, 757–66.
- [5] SAOUMA V.E., INGRAFFEA A.R., GERGELY P., WHITE R.N., Interactive Finite Element Analysis of Reinforced Concrete: A Fracture Mechanics Approach, 1981.
- [6] SHEPHARD M.S., YEHIA N., BURD G.S., WEIDNER T.J., Automatic Crack Propagation Tracking, Computers & Structures, 1985, Vol. 20, No. 1, 211–223.
- [7] NAYAK G.C., ZIENKIEWICZ O.C., Elasto-Plastic Stress Analysis: A Generalization for Various Constitutive Relations Including Strain Softening, Int. J. Numer Meth. Engng., 1972, Vol. 5, 113–135.
- [8] BAŽANT Z.P., CEDOLIN L., Blunt Crack Band Propagation in Finite Element Analysis, Journal of the Engineering Mechanics, 1979, Vol. 105, No. 2, 297–315.
- [9] BELYTSHKO T., FISH J., ENGELMANN B.E., A finite element with embedded localization zones, Computer Methods in Applied Mechanics and Engineering, 1988, Vol. 70, 59–89.
- [10] BELYTSHKO T., LU Y.Y., GU L., Element-free Galerkin methods, Int. J. Numer Meth. Engng., 1994, Vol. 37, 229–256.
- [11] LIU W.K., JUN S., ZHANG Y.F., Reproducing kernel particle methods, Int. J. Numer Meth. Fluids, 1995, Vol. 20, 1081–1106.
- [12] MELENK J.M., BABUŠKA I., The Partition of Unity Finite Element Method: Basic Theory and Applications, Computer Methods in Applied Mechanics and Engineering, 1996, Vol. 139, 289–314.
- [13] BELYTSCHKO T., BLACK T., Elastic Crack Growth in Finite Elements with Minimal Remeshing, Int. J. Numer Meth. Engng., 1999, Vol. 45, 601–620.
- [14] MOËS N., DOLBOW J., BELYTSCHKO T., A Finite Element Method for Crack Growth Without Remeshing, Int. J. Numer Meth. Engng., 1999, Vol. 46, 131–150.
- [15] STOLARSKA M., CHOPP D.L., MOËS N., BELYTSCHKO T., Modelling Crack Growth by Level Sets in the Extended Finite Element Method, Int. J. Numer Meth. Engng., 2001, Vol. 51, 943–960.
- [16] BELYTSCHKO T., CHEN H., XU J., ZI G., Dynamic Crack Propagation Based on Loss of Hyperbolicity and a New Discontinuous Enrichment, Int. J. Numer Meth. Engng., 2003, Vol. 58, 1873–1905.
- [17] RÉTHORÉ J., DE BORST R., ABELLAN M.-A., A Two-Scale Approach for Fluid Flow in Fractured Porous Media, Int. J. Numer Meth. Engng., 2006, Vol. 71, 780–800.
- [18] KHOEI A.R., HAGHIGHAT E., Extended Finite Element Modeling of Deformable Porous Media with Arbitrary Interfaces, Applied Mathematical Modelling, 2011, Vol. 35, No. 11, 5426–5441.
- [19] AREIAS P.M.A., BELYTSCHKO T., Two-Scale Method for Shear Bands: Thermal Effects and Variable Bandwidth, Int. J. Numer Meth. Engng., 2007, Vol. 72, 658–696.
- [20] GÁLVEZ J.C., ELICES M., GUINEA G.V., PLANAS J., Mixed Mode Fracture of Concrete Under Proportional and Nonproportional Loading, Int. J. Fract., 1998, Vol. 94, 267– 284.
- [21] WELLS G.N., SLUYS L.J., A New Method for Modelling Cohesive Cracks Using Finite Elements, Int. J. Numer. Meth. Engng., 2001, Vol. 50, 2667–2682.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b66cb817-4c3c-4d47-b744-b9bd4a4cee21