Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Main goal of the paper is to present the algorithm serving to solve the heat conduction inverse problem. Authors consider the heat conduction equation with the Riemann-Liouville fractional derivative and with the second and third kind boundary conditions. This type of model with fractional derivative can be used for modelling the heat conduction in porous media. Authors deal with the heat conduction inverse problem, which, in this case, consists in identifying an unknown thermal conductivity coefficient. Measurements of temperature, in selected point of the region, are the input data for investigated inverse problem. Basing on this information, a functional describing the error of approximate solution is created. Minimizing of this functional is necessary to solve the inverse problem. In the presented approach the Ant Colony Optimization (ACO) algorithm is used for minimization.
Czasopismo
Rocznik
Tom
Strony
38--42
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Institute of Mathematics, Gliwice, Poland
autor
- Silesian University of Technology, Institute of Mathematics, Gliwice, Poland
Bibliografia
- [1] Miller, K. & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential. Wiley, New York.
- [2] Podlubny, I. (1999). Fractional Differential Equations. Academic Press, San Diego.
- [3] Kosztołowicz, T. (2008). Application of differential equations with fractional derivatives to the description of subdiffusion. UJK, Kielce (in Polish).
- [4] Hilfer, R. (2000). Applications of Fractional Calculus in Physics. World Scientific, Singapur.
- [5] Mitkowski, W. & Skruch, P. (2013). Fractional-order models of the supercapacitors in the form of RC ladder networks. Bulletin of the Polish Academy of Sciences Technical Sciences. 61, 581-587. DOI: 10.2478/bpasts-2013-0059.
- [6] Sowa, M. (2018). A harmonic balance methodology for circuits with fractional and nonlinear elements. Circuits, System, and Signals Processing. 37(11), 4695-4727. DOI: 10.1007/s00034-018-0794-8.
- [7] Voller, V.R. (2016). Computations of anomalous phase change. International Journal of Numerical Methods for Heat Fluid Flow. 26, 624-638. DOI: 10.1108/HFF-08-2015-0326.
- [8] Voller, V.R. (2018). Anomalous heat transfer: examples, fundamentals, and fractional calculus models. Advances in Heat Transfer. 50, 333-380. DOI: 10.1016/bs.aiht. 2018.06.001.
- [9] Szymanek, E., Błaszczyk, T., Hall, M.R., Keikhaei Dehdezi, P. & Leszczyński, J.S. (2014). Modelling and analysis of heat transfer through 1D complex granular system. Granular Matter. 16, 687-694. DOI: 10.1007/s10035-014-0517-1.
- [10] Obrączka, A., Kowalski, J. (2012). Modeling of heat distribution in ceramic materials using differential equations of incomplete order. Materiały XV Jubileuszowego Sympozjum ,,Podstawowe Problemy Energoelektroniki, Elektromechaniki i Mechatroniki” (Ed. M. Szczygieł), Vol. 32 of Archiwum Konferencji PTETiS, Komitet Organizacyjny Sympozjum PPEE i Seminarium BSE, 133-135.
- [11] Zhuang, Q., Yu, B. & Jiang, X. (2015). An inverse problem of parameter estimation for time-fractional heat conduction in a composite medium using carbon–carbon experimental data. Physica B. 456, 9-15. DOI: 10.1016/j.physb. 2014.08.011.
- [12] Murio, D.A. (2007). Stable numerical solution of a fractional diffusion inverse heat conduction problem. Computers & Mathematics with Applications. 53, 1492-1501. DOI: 10.1016/j.camwa.2006.05.027.
- [13] Murio, D.A. (2008). Time fractional IHCP with Caputo fractional derivatives. Computers & Mathematics with Applications. 56, 2371-2381. DOI: 10.1016/j.camwa. 2008.05.015.
- [14] Murio, D.A. & Mejia, C.E. (2008). Generalized time fractional IHCP with Caputo fractional derivatives. Journal of Physics: Conference Series. 135:012074 (8pp). DOI: 10.1088/1742-6596/135/1/012074.
- [15] Murio, D.A. (2009). Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Problems in Science and Engineering. 17, 229-243. DOI: doi.org/10.1080/ 17415970802082872.
- [16] Zhang, Z. (2016). An undetermined coefficient problem for a fractional diffusion equation. Inverse Problems. 32(1): 015011. DOI: 10.1088/0266-5611/32/1/015011.
- [17] Brociek, R. & Słota, D. (2016). Implicit finite difference method for space fractional heat conduction equation with mixed boundary conditions. Silesian Journal of Pure and Applied Mathematics. 6, 125-136.
- [18] Socha, K. & Dorigo, M. (2008). Ant colony optimization for continuous domains. European Journal of Operational Research. 185, 1155-1173. DOI: 10.1016/j.ejor.2006.06.046.
- [19] Brociek, R. & Słota, D. (2017). Application of Real Ant Colony Optimization algorithm to solve space and time fractional heat conduction inverse problem. Information Technology and Control. 46(2), 171-182. DOI: 10.5755/j01.itc.46.2.17.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b669f82f-15ab-4509-9f80-90f02aed8b4c