Politechnika Warszawska

Performance properties of rhenium-added W-Ni-Co heavy tungsten alloy

Właściwości użytkowe wolframowego stopu ciężkiego W-Ni-Co z dodatkiem renu

DOI: 10.15199/62.2024.11.12

Heavy tungsten alloy W91-Ni6-Co3 without and with the addn. of 2% by mass of Re (alloy W89-Ni6-Co3-Re2) was prepared by mixing W-Ni-Co-Re powders with a fixed granulometric distribution, including manual grinding of Re powder in a mortar and mech. grinding. The appropriate alloy microstructure was obtained in the sintering process with the participation of the liq. phase at temp. of 1535° C for 20 min in a H_2 atmosphere. A material with a d. close to theor. was obtained with a significant difference in the microstructure of the produced sinters.

Keywords: powder metallurgy, high-temperature sintering, tungsten heavy alloys, rhenium, microstructure

W artykule przedstawiono analizę porównawczą wyników badań stopu ciężkiego W91-Ni6-Co3 bez oraz z dodatkiem 2% mas. renu (stop W89-Ni6-Co3-Re2). Proces technologiczny przygotowania partii materiału proszkowego, wytworzonego w określonych warunkach mieszania mieszaniny proszków W-Ni-Co-Re o ustalonym rozkładzie granulometrycznym, obejmował ręczne mielenie proszku renu w moździerzu oraz mielenie mechaniczne. Uzyskano odpowiednią mikrostrukturę stopu w procesie spiekania z udziałem fazy ciekłej w temp. 1535°C przez 20 min w atmosferze wodoru. Badania wykazały uzyskanie materiałów o gęstości bliskiej teoretycznej przy znacznej różnicy mikrostruktury wytworzonych spieków.

Słowa kluczowe: metalurgia proszków, spiekanie wysokotemperaturowe, wolframowe stopy ciężkie, ren, mikrostruktura

Wolframowe stopy ciężkie stanowią unikatowe materiały o wysokiej gęstości, powyżej 17,5 g/cm³, które cechują się dużą wytrzymałością na rozciąganie ($R_{\rm m}$ = 1000–2000 MPa), dużą plastycznością ($A_{\rm s}$ do 30%) oraz twardością w zakresie 25–45 HRC. Ze względu na dwufazową mikrostrukturę składającą się z praktycznie czystych chemicznie ziaren wolframu w osnowie fazy wiążącej na bazie niklu, nazywane są często kompozytami wolframowymi z udziałem dodatków stopowych, takich jak żelazo, kobalt, molibden, które rozpuszczając się w osnowie, mają na celu poprawić właściwości użytkowe stopu¹,²), a w szczególności jego parametry wytrzymałościowe³-5).

Mgr inż. Andrzej PENKUL (ORCID: 0000-0001-9855-6610) w roku 2005 ukończył studia na Wydziale Inżynierii Produkcji Politechniki Warszawskiej. Obecnie jest asystentem w Instytucie Mechaniki i Poligrafii na Wydziale Mechanicznym Technologicznym Politechniki Warszawskiej. Specjalność – uzbrojenie.

*Adres do korespondencji:

Instytut Mechaniki i Poligrafii, Wydział Mechaniczny Technologiczny, Politechnika Warszawska, ul. Narbutta 85, 02-524 Warszawa, tel.: (22) 234-84-67, e-mail: andrzej.penkul@pw.edu.pl

Wolframowe stopy ciężkie mają szeroki zakres aplikacji^{6,7)}, szczególnie stosowane są w przemyśle obronnym jako rdzenie pocisków podkalibrowych o wysokiej skuteczności przebicia stalowych płyt pancernych, warunkowanej wysoką gęstością materiału i jego parametrami wytrzymałościowymi^{3–5,8)}. Właściwości te można zwiększyć poprzez zastosowanie mikrododatku renu o jeszcze wyższej gęstości, który powoduje też zwiększenie parametrów wytrzymałościowych stopu, wywołując efekt tzw. samoostrzenia się w przypadku rdzenia pocisku (penetratora), podczas jego przebicia przez płytę pancerną, w wyniku tworzenia się tzw. adiabatycznych pasm ścinania^{8,9)}.

Celem pracy było zbadanie wpływu dodatku renu na parametry wytrzymałościowe i użytkowe wolframowego stopu ciężkiego W-Ni-Co oraz ocena jakościowa mikrostruktury z uwzględnieniem morfologii ziaren.

Część doświadczalna

Materialy

Materiał wsadu proszkowego do spiekania stanowiły komercyjne proszki metali o czystości powyżej 99,9%, wolfram (firmy Baildonit), nikiel karbonylkowy 123, ultradrobny kobalt (firmy William Rowland, Anglia) oraz ren wytworzony w KGHM, który ze względu na zbyt dużą wielkość cząstek ($D_{0.5}$ = 32 µm) poddano rozdrobnieniu,

stosując zarówno ręczne ucieranie w moździerzu ceramicznym, jak i metodę mielenia w młynku energetycznym (każdy proces po 2 h).

Metodyka badań

Wszystkie proszki w stanie dostawy oraz proszek renu po rozdrobnieniu poddano badaniom rozkładu granulometrycznego wielkości cząstek metodą dyfrakcji laserowej z wykorzystaniem urządzenia Mastersizer X firmy Malvern Instruments Ltd. (tabela 1).

Po uzyskaniu proszku renu o zmniejszonym rozkładzie granulometrycznym w procesie rozdrabniania, przygotowano materiał wsadowy w postaci naważki proszków (tabela 2).

Ze względu na porównywalne parametry wielkości cząstek proszku renu po rozdrobnieniu obiema metodami, w dalszych badaniach stosowano proszek renu ucierany w moździerzu (rys. 1).

Dla celów porównawczych wpływu dodatku renu na właściwości użytkowe wolframowego stopu ciężkiego przygotowano dwie mieszanki proszków. Całkowita masa poszczególnych mieszanek proszków wynosiła 1800 g (tabela 2).

Ważenie proszków z dokładnością 0,01 g przeprowadzono na wadze firmy RADWAG, model PS.X2, mieszając je następnie przez 2 h w mieszalniku typu Turbulla. Proces zagęszczania mieszanki przeprowadzono w matrycy stalowej pod ciśnieniem 200 MPa, uzyskując wypraski w kształcie prętów o długości 600 mm. Proces spiekania przeprowadzono w piecu firmy Vacuum Industries, Inc., w temp.

1535°C przez 20 min w atmosferze wodoru. Badania gęstości wytworzonych prętów wykonano za pomocą wagi laboratoryjnej RADWAG. Obserwacje mikrostruktury wykonano na zgładach metalograficznych, które analizowano za pomocą mikroskopu świetlnego Nikon Eclipse MA200 przy powiększeniu 50-1000×. Celem obserwacji była ocena jakościowa mikrostruktury z uwzględnieniem morfologii, wielkości i rozmieszczenia ziaren wolframu w osnowie spieku. Badania mikrotwardości w jednorodnym fazowo obszarze wykonano na skomputeryzowanym mikrotwardościomierzu Future-Tech (model 810), pod obciążeniem 25 g (HV 0,025) przez 10 s obciążenia wgłębnika dla każdego indywidualnego pomiaru. Pomiar twardości przeprowadzono za pomocą twardościomierza Laizhou Huayin Testing Instruments model HR-150A, metoda Rockwella w skali C, zgodnie z wytycznymi normy¹⁰⁾. Mikroanalizę składu chemicznego przeprowadzono metoda SEM/EDS za pomoca skaningowego mikroskopu elektronowego JOELJCM-7000.

Wyniki badań

Analiza uzyskanych wyników badań wolframowych stopów ciężkich, wytworzonych w określonych warunkach spiekania, wykazała ich gęstość zbliżoną do teoretycznej (tabela 3), bez udziału porów i innych wad materiałowych obserwowanych w obrazach mikroskopowych (rys. 2). Stopy te wykazywały dwufazową strukturę z udziałem ziaren wolframu w metalicznej osnowie na bazie Ni (o mniejszej twardości w stosunku do ziaren wolframu, identyfikowanej w mikroobszarach okre-

Table 1. The characteristics of powders used for the mixture preparation

Tabela 1. Rozkład wielkości cząstek wsadu proszkowego użytego do spiekania

Rodzaj proszku	Rozkład wielkości cząstek, µm		
Rouzaj proszku	$D_{0,1}$	$D_{0,5}$	$D_{0,9}$
Wolfram	3,13	8,68	21,76
Nikiel	4,20	10,96	34,66
Kobalt	3,92	8,69	16,46
Ren (surowy)	32,27	8,92	160,20
Ren po ucieraniu (2 h moździerz)	11,08	2,73	35,08
Ren po mieleniu (2 h młynek energetyczny)	12,56	2,76	33,08

a)

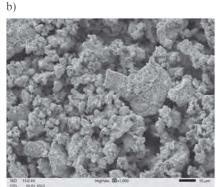


Fig. 1. Rhenium powder a) in its initial state, and b) after hand grinding in a mortar

Rys. 1. Proszek renu a) w stanie wyjściowym i b) po ucieraniu ręcznym w moździerzu

Table 2. Chemical composition and weights of individual powders

Tabela 2. Skład chemiczny oraz naważki poszczególnych proszków

	Mieszanka		
Proszek	W91-Ni6- -Co3	W89-Ni6-Co3- -Re2	
	masa poszczególnych proszków, g		
Wolfram	1638	1602	
Nikiel	108	108	
Kobalt	54	54	
Ren (ucierany 2 h w moździerzu)	-	36	
Masa całkowita mieszanki, g	1800	1800	

Table 3. Results of the density measurements of the tested sinters

Tabela 3. Wyniki pomiarów gestości badanych spieków

Stop	Pomiar gęstości, g/cm³		
Stop	teoretyczna	rzeczywista	
W91-Ni6-Co3	17,46	$17,45 \pm 0,01$	
W89-Ni6-Co3-Re2	17,49	$17,47 \pm 0,01$	

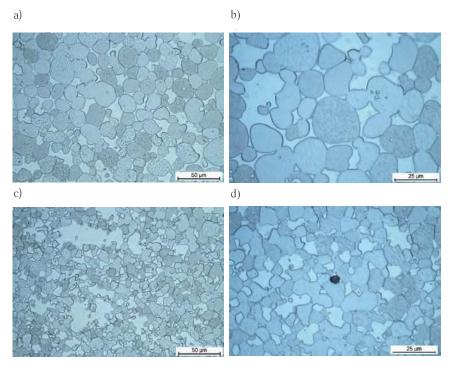


Fig. 2. Microstructure of the W91-Ni6-Co3 alloy: a) magnification 500×, b) 1000×, and W89-Ni6-Co3--Re2: c) magnification 500×, d) 1000×

Rys. 2. Mikrostruktura stopu W91-Ni6-Co3 w powiększeniu a) 500×, b) 1000×, oraz W89-Ni6-Co3-Re2 w powiększeniu c) 500×, d) 1000×

Table 4. Results of Vickers microhardness measurements

Tabela 4. Wyniki pomiarów mikrotwardości metoda Vickersa

C4 - 1-	Mikrotwardo	Twardość HRC	
Stop	ziarno wolframu	faza wiążąca	Twardose TIRC
W91-Ni6-Co3	421±12	360±22	26
W89-Ni6-Co3-Re2	432±11	373±18	26

ślonej fazy metodą Vickersa) (tabela 4). Badania SEM/EDS wykazały, że osnowę wiążącą ziarna wolframu stanowi roztwór stały z udziałem Co i W (dla stopu W91-Ni6-Co3) oraz Co, W i Re (dla stopu W89-Ni6-Co3-Re2) (tabela 5). Zastosowana temperatura spiekania z udziałem fazy ciekłej powyżej temperatury topnienia¹¹⁾ Ni (1445°C) i sprzyjającej rozpuszczalności wolframu stanowiła o bardzo dobrej kohezji ziaren (bez oznak nieciągłości struktury nawet po oddziaływaniu wgłębnika Vickersa) (rys. 3), co wpłynęło na wysoką gęstość wytworzonych spieków, bliską teoretycznej (rys. 2, tabela 3).

Z przeprowadzonych badań wynika, że wprowadzenie 2% mas. renu wpływało na rozdrobnienie struktury z udziałem istotnie mniejszych ziaren wolframu w osnowie roztworu stałego na bazie Ni (z udziałem Co i W) (rys. 2c i 2d), przy jednocześnie zauważalnym wzroście mikrotwardości w analizowanych strefach

struktury (tabela 4), w stosunku do spieku W91-Ni6-Co3 (bez udziału renu).

Stwierdzone rozdrobnienie struktury i wzrost mikrotwardości wyróżnionych składników stopowych bez wątpienia będzie miało wpływ na zmianę właściwości wytrzymałościowych, zdolność do odkształcenia plastycznego i mechanizm pękania wolframowego stopu ciężkiego z dodatkiem renu, co może mieć istotne znaczenie w aspekcie głębokości penetracji i zwiększenia przebijalności płyt pancernych.

Podsumowanie

Badania dotyczyły analizy porównawczej struktury i właściwości mechanicznych wolframowego stopu ciężkiego W-Ni-Co (bez oraz z dodatkiem 2% mas. renu), uzyskanego w procesie spiekania z udziałem fazy ciekłej w atmosferze wodoru, przy użyciu mieszaniny proszków stopowanych mechanicznie w mieszalniku, w określonych warunkach procesów technologicznych.

Na podstawie uzyskanych wyników badań stwierdzono, że zastosowany rozkład granulometryczny cząstek wsadu proszkowego i warunki przygotowania mieszaniny proszków wraz z dodatkiem proszku renu poddanego procesowi ucierania ręcznego pozwalają uzyskać materiał wsadowy do

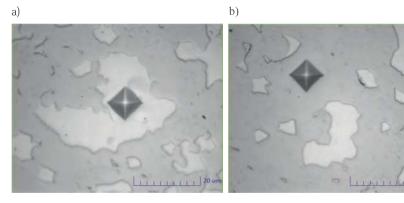


Fig. 3. View of Vickers indenter impressions in the sample W89-Ni6-Co3-Re2 a) in the matrix, and b) tungsten grain

Rys. 3. Widok odcisków wgłębnika Vickersa w próbce W89-Ni6-Co3-Re2 a) w obszarze fazy wiążącej, b) w obszarze ziarna wolframu

Table 5. SEM/EDS results of chemical microanalysis of tested alloys

Tabela 5. Wyniki mikroanalizy SEM/EDS składu chemicznego badanych stopów

Stop	Miejsce	Skład chemiczny, % mas.			
	pomiaru	W	Ni	Co	Re
W91-Ni6-Co3	osnowa	44,42±0,24	37,28±0,30	18,30±0,19	-
	ziarno W	100±0,28	-	-	-
W89-Ni6-Co3-Re2	osnowa	43,27±0,23	36,32±0,29	17,85±0,10	2,56±0,09
	ziarno W	98,83±0,28	-	-	1,17±0,10

spiekania reaktywnego z udziałem fazy ciekłej w atmosferze wodoru z uzyskaniem spieku o bardzo dobrych właściwościach użytkowych.

Zastosowane parametry procesu spiekania pozwalają na uzyskanie materiału o gęstości bliskiej gęstości teoretycznej, a wytworzone spieki wykazują dwufazowa strukturę z udziałem ziaren wolframu w metalicznej osnowie na bazie Ni z udziałem Co i W (dla stopu W91-Ni6-Co3) oraz Co, W i Re (dla stopu W89-Ni6-Co3-Re2).

Dodatek 2% mas. renu wpływa na rozdrobnienie struktury z udziałem mniejszych ziaren wolframu w osnowie roztworu stałego na bazie Ni, przy jednoczesnym wzroście mikrotwardości HV w analizowanych strefach struktury.

Rozdrobnienie struktury i wzrost mikrotwardości stopu W-Ni-Co z udziałem renu hipotetycznie będzie miało wpływ na zmianę właściwości wytrzymałościowych, zdolność do odkształcenia plastycznego i mechanizm pękania wolframowego stopu ciężkiego (co wymaga dalszych badań) i może mieć istotne znaczenie dla głębokości penetracji i zwiększenia przebijalności płyt pancernych.

Otrzymano: 03-10-2024 Zrecenzowano: 17-10-2024 Zaakceptowano: 22-10-2024 Opublikowano: 20-11-2024

LITERATURA

- [1] R.M. German, [w:] Proceedings of the 1st International Conference on Tungsten and Tungsten Alloys (red. A. Bose, R.J. Dowding), Metal Powder Industries Federation, Princeton 1992.
- [2] D.V. Edmonds, Refract. Met. Hard Mater. 1991, 10, 15.
- [3] L.S. Magness, D. Kapoor, [w:] Proceedings of the 2nd International Conference on Tungsten and Refractory Metals (red. A. Bose, R.J. Dowding), Metal Powder Industries Federation, Princeton 1994.
- [4] A. Bose, J. Lankford, Jr, H. Couque, [w:] Advances in powder metallurgy and particulate materials. Processing, properties, and applications (red. A. Lawley, A. Swanson), Metal Powder Industries Federation,
- P. Skoczylas, M. Kaczorowski, Materials 2021, 14, nr 23, 7365, https:// [5] doi.org/10.3390/ma14237365.
- B. Skowrońska, M. Bober, P. Kołodziejczak, M. Baranowski, M. Kozłowski, T. Chmielewski, Appl. Sci. 2022, 12, nr 18, 9034.
- [7] K. Bochenek, W. Węglewski, A. Strojny-Nędza, K. Pietrzak, T. Chmielewski, M. Chmielewski, M. Basista, J. Therm. Spray Technol. 2022, **31**, nr 5, 1609.
- T. Majewski, Technologiczne uwarunkowania właściwości użytkowych spieków ciężkich W-(Fe, Ni, Re), WAT, Warszawa 2013.
- [9] T.P. Bagchi, A. Dutta, N. Maitra, P/M Sci. Technol. Briefs 2001, 3, nr 2, 18.
- [10] PN-EN ISO 6508-1: 2015, Metale. Pomiar twardości sposobem Rockwella. Cz. 3. Kalibracja wzorców odniesienia.
- [11] P. Skoczylas, M. Kaczorowski, Materials 2022, 15, nr 24, 9064.

WYDAWNICTWO Y SIGMA-NOT