PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Oddziaływanie indukcyjności obciążenia obwodu wtórnego indukcyjnego przekładnika prądowego na dokładność transformacji harmonicznych prądu odkształconego

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The influence of the load inductance in the secondary winding of the inductive current transformer on the distorted current transformation accuracy of distorted current harmonics
Języki publikacji
PL
Abstrakty
PL
W artykule poddano analizie wpływ indukcyjności obciążenia obwodu wtórnego indukcyjnego przekładnika prądowego na dokładność transformacji harmonicznych prądu odkształconego. Obciążenie indukcyjne powoduje znaczący wzrost wartości błędów prądowego i kątowego wraz ze wzrostem częstotliwości transformowanej harmonicznej. Wykazano również możliwość zastosowania opracowanego toru probierczego i przetwornika wzorcowego do sprawdzania dokładności transformacji harmonicznych prądu odkształconego przez indukcyjne przekładniki prądowe.
EN
This paper analyses the effect of the load inductance of the secondary circuit of an inductive current transformer on the transformation accuracy of the distorted current harmonics. The inductive load causes a significant increase of the values of current error and phase displacement with the increase of the frequency of the transformed harmonic The feasibility of using the developed high-current test circuit and the reference transducer to determine the harmonic transformation accuracy of distorted current by the inductive current transformers was also verified.
Rocznik
Strony
136--141
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
  • Politechnika Łódzka, Instytut Mechatroniki i Systemów Informatycznych, ul. Stefanowskiego 22, 90-537 Łódź
Bibliografia
  • [1] Murray R., De Kock J., Instrument Transformers Influence on Harmonic Measurements for Grid Code Compliance. In Proceedings of the 2018 IEEE 4th Global Electromagnetic Compatibility Conference, GEMCCon 2018; 2019.
  • [2] Yang T., Pen H., Wang D., Wang Z., Harmonic Analysis in Integrated Energy System Based on Compressed Sensing. Appl. Energy 165 (2016), 583–591, doi:10.1016/j.apenergy.2015.12.058.
  • [3] Dirik H., Duran I.U., Gezegin C., A Computation and Metering Method for Harmonic Emissions of Individual Consumers. IEEE Trans. Instrum. Meas. 68 (2019), 412–420, doi:10.1109/TIM.2018.2843538.
  • [4] Zobaa A.F., Abdel Aleem S.H.E., A New Approach for Harmonic Distortion Minimization in Power Systems Supplying Nonlinear Loads. IEEE Trans. Ind. Informatics 10 (2014), 1401–1412, doi:10.1109/TII.2014.2307196.
  • [5] Mazin H.E., Xu W., Huang B., Determining the Harmonic Impacts of Multiple Harmonic-Producing Loads. IEEE Trans. Power Deliv. 26 (2011), 1187–1195, doi:10.1109/TPWRD.2010.2093544.
  • [6] Kaczmarek M., Stano E., Review of Measuring Methods, Setups and Conditions for Evaluation of the Inductive Instrument Transformers Accuracy for Transformation of Distorted Waveforms. Energies 16 (2023), doi:10.3390/en16114360.
  • [7] Kaczmarek M., Stano E., Challenges of Accurate Measurement of Distorted Current and Voltage in the Power Grid by Conventional Instrument Transformers. Energies 16 (2023), 2648, doi:10.3390/en16062648.
  • [8] Kaczmarek M., The Influence of the Sinusoidal Conductive Interferences on Metrological Properties of the Voltage Transformers under the Change of Their Operation Conditions. Prz. Elektrotechniczny 86 (2010), 34–35.
  • [9] IEC 61869-1, Ins. Trans. - General Requirements; 2nd ed.; Genewa, Szwajcaria, (2023);
  • [10] IEC 61869-6, Inst. Transf. - Additional General Requirements for Low-Power Instrument Transformers; Geneva, Switzerland, (2016);
  • [11] IEC 61869-2, Ins. Trans.—Additional Requirements for Current Transformers; IEC: Geneva, Switzerland, (2012);
  • [12] Cristaldi L., Faifer M., Laurano C., Ottoboni R., Toscani S., Zanoni M., A Low-Cost Generator for Testing and Calibrating Current Transformers. IEEE Trans. Instrum. Meas. 68 (2019), 2792–2799, doi:10.1109/TIM.2018.2870264.
  • [13] Brandolini A., Faifer M., Ottoboni R., A Simple Method for the Calibration of Traditional and Electronic Measurement Current and Voltage Transformers. IEEE Trans. Instrum. Meas. 58 (2009), 1345–1353, doi:10.1109/TIM.2008.2009184.
  • [14] Laurano C., Toscani S., Zanoni M., A Simple Method for Compensating Harmonic Distortion in Current Transformers: Experimental Validation. Sensors 21 (2021), 2907, doi:10.3390/s21092907.
  • [15] Frigo G., Agustoni M., Calibration of a Digital Current Transformer Measuring Bridge: Metrological Challenges and Uncertainty Contributions. Metrology 1 (2021), 93–106, doi:10.3390/metrology1020007.
  • [16] Siegenthaler S., Mester C., A Computer-Controlled Calibrator for Instrument Transformer Test Sets. In Proceedings of the IEEE Transactions on Instrumentation and Measurement; IEEE, 2017; Vol. 66, pp. 1184–1190.
  • [17] Stano E., Kaczmarek M., Wideband Self-Calibration Method of Inductive Cts and Verification of Determined Values of Current and Phase Errors at Harmonics for Transformation of Distorted Current. Sensors 20 (2020), 2167, doi:10.3390/s20082167.
  • [18] Kaczmarek M., Stano E., Nonlinearity of Magnetic Core in Evaluation of Current and Phase Errors of Transformation of Higher Harmonics of Distorted Current by Inductive Current Transformers. IEEE Access 8 (2020), 118885–118898, doi:10.1109/ACCESS.2020.3005331.
  • [19] Kaczmarek M., Stano E., Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers? Energies 14 (2021), 4432, doi:10.3390/en14154432.
  • [20] Stano E., The Method to Determine the Turns Ratio Correction of the Inductive Current Transformer. Energies 14 (2021), doi:10.3390/en14248602.
  • [21] Kaczmarek M., Stano E., The Influence of the 3rd Harmonic of the Distorted Primary Current on the Self-Generation of the Inductive Current Transformers. IEEE Access 10 (2022), 55876–55887, doi:10.1109/access.2022.3177892.
  • [22] Kaczmarek M., The Source of the Inductive Current Transformers Metrological Properties Deterioration for Transformation of Distorted Currents. Electr. Power Syst. Res. 107 (2014), 45–50, doi:10.1016/j.epsr.2013.09.007.
  • [23] Mingotti A., Peretto L., Bartolomei L., Cavaliere D., Tinarelli R., Are Inductive Current Transformers Performance Really Affected by Actual Distorted Network Conditions? An Experimental Case Study. Sensors (Switzerland) 20 (2020), 927, doi:10.3390/s20030927.
  • [24] Mingotti A., Bartolomei L., Peretto L., Tinarelli R., On the Long-Period Accuracy Behavior of Inductive and Low-Power Instrument Transformers. Sensors 20 (2020), 5810, doi:10.3390/s20205810.
  • [25] Kaczmarek M., Wide Frequency Operation of the Inductive Current Transformer with Ni80Fe20 Toroidal Core. Electr. Power Components Syst. 42 (2014), 1087–1094, doi:10.1080/15325008.2014.913744.
  • [26] Locci N., Muscas C., Comparative Analysis between Active and Passive Current Transducers in Sinusoidal and Distorted Conditions. IEEE Trans. Instrum. Meas. 50 (2001), 123–128, doi:10.1109/19.903889.
  • [27] Cataliotti A., Di Cara D., Emanuel A.E., Nuccio S., Current Transformers Effects on the Measurement of Harmonic Active Power in LV and MV Networks. IEEE Trans. Power Deliv. 26 (2011), 360–368, doi:10.1109/TPWRD.2010.2079336.
  • [28] Kaczmarek M., Szczęsny A., Stano E., Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics. Energies 15 (2022), doi:10.3390/en15124368.
  • [29] Kaczmarek M., Właściwości Metrologiczne Przekładnika Prądowego Wyższych Częstotliwości. Prz. Elektrotechniczny 90 (2014), 132–135, doi:10.12915/pe.2014.03.28.
  • [30] Stano E., Kaczmarek P., Kaczmarek M., Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers? Energies 15 (2022), doi:10.3390/en15155737.
  • [31] Stano E., Kaczmarek P., Kaczmarek M., Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer. Energies 15 (2022), doi:10.3390/en15155436.
  • [32] Kaczmarek M.L., Stano E., Application of the Inductive High Current Testing Transformer for Supplying of the Measuring Circuit with Distorted Current. IET Electr. Power Appl. 13 (2019), 1310–1317, doi:10.1049/iet-epa.2018.5803.
  • [33] Kaczmarek M., Kaczmarek P., Comparison of the Wideband Power Sources Used to Supply Step-up Current Transformers for Generation of Distorted Currents. Energies 13 (2020), 1849, doi:10.3390/en13071849.
  • [34] Kaczmarek M., Stano E., New Approach to Evaluate the Transformation Accuracy of Inductive CTs for Distorted Current. Energies 16 (2023), doi:10.3390/en16073026.
  • [35] Kaczmarek M., Kaczmarek P., Stano E., The Performance of the High-Current Transformer during Operation in the Wide Frequencies Range. Energies 15 (2022), doi:10.3390/en15197208.
  • [36] Stano E., System Pomiarowy Do Sprawdzania Dokładności Transformacji Poszczególnych Harmonicznych Prądu Odkształconego Przez Indukcyjne Przekładniki Prądowe. Prz. Elektrotechniczny 96 (2020), 187–190, doi:10.15199/48.2020.04.39.
  • [37] Ballal M.S., Wath M.G., Suryawanshi H.M., A Novel Approach for the Error Correction of Ct in the Presence of Harmonic Distortion. IEEE Trans. Instrum. Meas. 68 (2019), 4015–4027, doi:10.1109/TIM.2018.2884575.
  • [38] Haghjoo F., Pak M.H., Compensation of CT Distorted Secondary Current Waveform in Online Conditions. IEEE Trans. Power Deliv. 31 (2016), 711–720, doi:10.1109/TPWRD.2015.2448634.
  • [39] Collin A.J., Femine A.D., Gallo D., Langella R., Luiso M., Compensation of Current Transformers’ Nonlinearities by Tensor Linearization. IEEE Trans. Instrum. Meas. 68 (2019), 3841–3849, doi:10.1109/TIM.2019.2905908.
  • [40] Gallo D., Landi C., Luiso M., Real-Time Digital Compensation of Current Transformers over a Wide Frequency Range. IEEE Trans. Instrum. Meas. 59 (2010), 1119–1126, doi:10.1109/TIM.2010.2044616.
  • [41] IEC 61869-2:2012/ISH1:2022, Interpretation Sheet 1 - Instrument Transformers - Part 2: Additional Requirements for Current Transformers; Geneva, Switzerland, (2022);
  • [42] Crotti G., Delle Femine A., Gallo D., Giordano D., Landi C., Letizia P.S., Luiso M., Calibration of Current Transformers in Distorted Conditions. In Proceedings of the Journal of Physics: Conference Series; 2018; Vol. 1065.
  • [43] Kaczmarek M., Inductive Current Transformer Accuracy of Transformation for the PQ Measurements. Electr. Power Syst. Res. 150 (2017), 169–176, doi:10.1016/j.epsr.2017.05.006.
  • [44] Kaczmarek M., Kaczmarek P., Stano E., The Effect of the Load Power Factor of the Inductive CT’s Secondary Winding on Its Distorted Current’s Harmonics Transformation Accuracy. Energies 15 (2022), doi:10.3390/en15176258.
  • [45] Stano E., Kaczmarek M., Analytical Method to Determine the Values of Current Error and Phase Displacement of Inductive Current Transformers during Transformation of Distorted Currents Higher Harmonics. Measurement 200 (2022), 111664, doi:https://doi.org/10.1016/j.measurement.2022.111664.
  • [46] Kaczmarek M., Estimation of the Inductive Current Transformer Derating for Operation with Distorted Currents. Bull. Polish Acad. Sci. Tech. Sci. 62 (2014), 363–366, doi:10.2478/bpasts-2014-0036.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b663bbd2-64b9-4bb1-9210-540ce71cce2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.