PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model order reduction technique applied on harmonic analysis of a submerged vibrating blade

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As part of an ongoing study into hydropower runner failure, a submerged, vibrating blade is investigated both experimentally and numerically. The numerical simulations performed are fully coupled acoustic-structural simulations in ANSYS Mechanical. In order to speed up the simulations, a model order reduction technique based on Krylov subspaces is implemented. This paper presents a comparison between the full ANSYS harmonic response and the reduced order model, and shows excellent agreement. The speedup factor obtained by using the reduced order model is shown to be between one and two orders of magnitude. The number of dimensions in the reduced subspace needed for accurate results is investigated, and confirms what is found in other studies on similar model order reduction applications. In addition, experimental results are available for validation, and show good match when not too far from the resonance peak.
Rocznik
Strony
131--142
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • The Waterpower Laboratory, Norwegian University of Science and Technology 7491 Trondheim, NORWAY EDR&Medeso, Leif Tronstads Plass 4 1337 Sandvika, NORWAY
  • EDR&Medeso, Leif Tronstads Plass 4 1337 Sandvika, NORWAY
autor
  • EDR&Medeso, Leif Tronstads Plass 4 1337 Sandvika, NORWAY
autor
  • The Waterpower Laboratory, Norwegian University of Science and Technology 7491 Trondheim, NORWAY
Bibliografia
  • [1] Kobro E. (2010): Measurement of Pressure Pulsations in Francis Turbines. Ph.D. Thesis, Norwegian University of Science and Technology.
  • [2] Liu X., Luo Y. and Wang Z. (2016): A review on fatigue damage mechanism in hydro turbines. Renewable and Sustainable Energy Reviews, vol.54, pp.1–14.
  • [3] Seidel U., Hübner B., Löfflad J. and Faigle P. (2012):, Evaluation of RSI-induced stresses in Francis runners. In: IOP Conference Series: Earth and Environmental Science, vol.15, IOP Publishing, pp.052010.
  • [4] Dörfler P., Sick M. and Coutu A. (2012):, Flow-induced pulsation and vibration in hydroelectric machinery: engineers guidebook for planning, design and troubleshooting. Springer Science and Business Media.
  • [5] Liang Q., Rodríguez C.G., Egusquiza E., Escaler X., Farhat M. and Avellan F. (2007): Numerical simulation of fluid added mass effect on a francis turbine runner. Computers and Fluids, vol.36, No.6, pp.1106–1118.
  • [6] Tanaka H. (2011): Vibration behavior and dynamic stress of runners of very high head reversible pump-turbines. International Journal of Fluid Machinery and Systems, vol.4, No.2, pp.289–306.
  • [7] Pirk R., Desmet W., Pluymers B., Sas P. and Goes L.C. (2002): Vibro-acoustic analysis of the brazilian vehicle satellite launcher (vls) fairing. In: Proceedings of the International Conference on Noise and Vibration Engineering, ISMA, Leuven, Belgium.
  • [8] Rudnyi E.B. (2013): Mor for ansys. System-Level Modeling of MEMS, pp.425–438.
  • [9] The hifrancis research project, https://www.ntnu.edu/web/norwegian-hydropower-center/hifrancis, accessed: 2018-05-07.
  • [10] The francis99 research project, https://www.ntnu.edu/nvks/francis-99, accessed: 2018-05-23.
  • [11] Craig R.R. and Kurdila A.J. (2006): Fundamentals of Structural Dynamics. John Wiley and Sons.
  • [12] Bai Z. (2002): Krylov subspace techniques for reduced-order modeling of largescale dynamical systems. Applied Numerical Mathematics, vol.43, No.1-2, pp.9–44.
  • [13] Freund R.W. (2000): Krylov-subspace methods for reduced-order modeling in circuit simulation. Journal of Computational and Applied Mathematics, vol.123, No.1-2, pp.395–421.
  • [14] Willcox K., Peraire J. and White J. (2002): An arnoldi approach for generation of reduced-order models for turbomachinery. Computers and Fluids, vol.31, No.3, pp.369–389.
  • [15] Lassaux G. (2002): High-fidelity reduced-order aerodynamic models: Application to active control of engine inlets. Ph.D. Thesis, Massachusetts Institute of Technology.
  • [16] Puri R.S., Morrey D., Bell A.J., Durodola J.F., Rudnyi E.B. and Korvink J.G. (2009): Reduced order fully coupled structural–acoustic analysis via implicit moment matching. Applied Mathematical Modelling, vol.33, No.11, pp.4097–4119.
  • [17] Fahy F.J. (2000): Foundations of Engineering Acoustics. Elsevier.
  • [18] Everstine G. (1997): Finite element formulations of structural acoustics problems. Computers and Structures, vol.65, No.3, pp.307–321.
  • [19] Zienkiewicz O.C. (1969): Coupled vibrations of a structure submerged in a compressible fluid. In: Proc. Of Symposium on Finite Element Techniques Held at the University of Stuttgart.
  • [20] Craggs A. (1971): The transient response of a coupled plate-acoustic system using plate and acoustic finie elements. Journal of Sound and Vibration, vol.15, No.4, pp.509–528.
  • [21] Atalla N. and Bernhard R. (1994): Review of numerical solutions for low-frequency structural-acoustic problems. Applied Acoustics, vol.43, No.3, pp.271–294.
  • [22] Benner P., Feng L. and Rudnyi E.B. (2008): Using the superposition property for model reduction of linear systems with a large number of inputs. In: Proceedings of the 18th International Symposium on Mathematical Theory of Networks and Systems.
  • [23] Rudnyi E.B. and Korvink J.G. (2004): Model order reduction for large scale engineering models developed In ansys. In: International Workshop on Applied Parallel Computing, Springer, pp.349–356.
  • [24] Rudnyi E.B., Lienemann J., Greiner A. and Korvink J.G. (2004): Mor4ansys: Generating compact models directly from Ansys models. In: Technical Proceedings of the 2004 Nanotechnology Conference and Trade Show, Nanotech, vol.2, pp.279–282.
  • [25] Bergan C., Solemslie B., Ostby P. and Dahlhaug O.G. (2018): Hydrodynamic damping of a fluttering hydrofoil In high-speed flows. International Journal of Fluid Machinery and Systems, vol.11, No.2, pp.146–153.
  • [26] Celik I.B., Ghia U., Roache P.J., Freitas C.J., Coleman H. and Raad P.E. (2008): Procedure for estimation and reporting of uncertainty due to discretization in {CFD} applications. Journal of Fluids {Engineering-Transactions} of the {ASME}, vol.130, No.7.
  • [27] Tengs E, Bergan C., Storli P.-T. and Jakobsen K.-R. (2018): Numerical simulation of the hydrodynamic damping of a vibrating hydrofoil. In: Proceedings of the 29th IAHR Symposium on Hydraulic Machinery and Systems, Not yet published, 2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b662977a-63a3-4719-9011-0ec578f3f511
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.