PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of topology optimization to thighbone and thighbone/implant structure modelling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an application of topology optimization in bioengineering. The varia- tional approach to the topology optimization is applied. Using an original numerical algorithm and a programme developed in Matlab, the structure of the thighbone was modelled by FEM. The numerical results of the mass distribution in modelled bone are provided. Obtained topologies are similar to the density distribution in real bone tissue including the case when the implant is imposed into the human body.
Rocznik
Strony
1006--1019
Opis fizyczny
Bibliogr. 15 poz., rys., wykr.
Twórcy
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
  • Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] E. Ramm, K.U. Bletzinger, R. Reitinger, K. Maute, The challenge of structural optimization, in: B.H.V. Topping, M. Papadrakakis (Eds.), Advanced in Structural Optimization, Int. Conf. on Computational Structures Technology held in Athen, 1994, 27–52.
  • [2] L. Cyganik, M. Binkowski, G. Kokot, P. Cyganik, T. Rusin, F. Bolechala, R. Nowak, Z. Wróbel, A. John, Microscale's relationship between Young's modulus and tissue density. Prediction of displacements, Comput. Methods Biomech. Biomed. Eng. 20 (16) (2017) 1658–1668. , http://dx.doi.org/ 10.1080/10255842.2017.1404993.
  • [3] R. Kutylowski, On an effective topology procedure, Struct. Multidiscipl. Optim. 20 (2000) 49–56.
  • [4] R. Kutylowski, On nonunique solutions in topology optimization, Struct. Multidiscipl. Optim. 23 (2002) 398–403.
  • [5] R. Kutylowski, M. Szwechlowicz, Analyse des Penalty-Faktors in SIMP-Methode in Bezug auf die Konvergenz der Lösung, Proc. Appl. Math. Mech. 8 (2008) 10803–10804. , http://dx.doi. org/10.1002/pamm.200810803.
  • [6] A. John, P. Wysota, Modelowanie zmian osteoporotycznych z wykorzystaniem obrazów z tomografii komputerowej (in Polish – The modelling of osteoporotic changes on the basis of computer tomography images), Modelowanie Inzynierskie 36 (2008) 151–158.
  • [7] D. Pasini, S.A. Khanoki, Multiscale design and multiobjective optimization of orthopedic hip implants with functionally graded cellular material, J. Biomech. Eng. 134 (3) (2012), http:// dx.doi.org/10.1115/1.4006115, 031004 (10 pages).
  • [8] T. Sokól, T. Lewinski, On the solution of the three forces problem and its application in optimal designing of a class of symmetric plane frameworks of least weight, Struct. Multidiscipl. Optim. 42 (2010) 835–853.
  • [9] C. Graczykowski, T. Lewinski, Michell cantilevers constructed within a half strip. Tabulation of selected benchmark results, Struct. Multidiscipl. Optim. 42 (2010) 869–877.
  • [10] M.I.Z. Ridzwan, S. Shuib, A.Y. Hassan, A.A. Shokri, M.N.M. Ibrahim, Optimization in implant topology to reduce stress shielding problem, J. Appl. Sci. 6 (13) (2006) 2768–2773.
  • [11] I. Levadnyi, J. Awrajcewicz, M.F. Goethel, A. Loskutov, Influence of the fixation region of the press-fit hip endoprosthesis on the stress–strain state of the ‘‘bone-implant’’ system, Comput. Biol. Med. 84 (2017) 195–204.
  • [12] M. Nowak, Structural optimization system based on trabecular bone surface adaptation, Struct. Multidiscipl. Optim. 32 (2006) 241–249.
  • [13] A. Andrade-Campos, A. Ramos, J.A. Simoes, A model of bone adaptation as a topology optimization process with contact, J. Biomed. Sci. Eng. 5 (2012) 229–244.
  • [14] A.A. Al-Tamimi, Ch. Peach, P.R. Fernandes, A. Cseke, P.J.D.S. Bartolo, Topologu optimization to reduce the stress shielding effect for orthopedic applications. 3rd CIRP Conference on biomanufacturing, Procedia CIRP 65 (2017) 202–206.
  • [15] M.R. Hardisty, R. Zauel, S.M. Stover, D.P. Fyhrie, The importance of intrinsic damage properties to bone fragility: a finite element study, J. Biomech. Eng. 135 (1) (2013), http:// dx.doi.org/10.1115/1.4023090, 011004 (9 pages).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b65e605d-9195-4756-8a73-2e30a5d865c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.