PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic Signal Strength Mapping and Analysis by Means of Mobile Geographic Information System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bluetooth beacons are becoming increasingly popular for various applications such as marketing or indoor navigation. However, designing a proper beacon installation requires knowledge of the possible sources of interference in the target environment. While theoretically beacon signal strength should decay linearly with log distance, on-site measurements usually reveal that noise from objects such as Wi-Fi networks operating in the vicinity significantly alters the expected signal range. The paper presents a novel mobile Geographic Information System for measurement, mapping and local as well as online storage of Bluetooth beacon signal strength in semireal time. For the purpose of on-site geovisual analysis of the signal, the application integrates a dedicated interpolation algorithm optimized for low-power devices. The paper discusses the performance and quality of the mapping algorithms in several different test environments.
Słowa kluczowe
Rocznik
Strony
595--606
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunication and Informatics, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Liu, S., Chen, Y., Trappe, W., Greenstein, L.J. (2009). Non-interactive localization of cognitive radios based on dynamic signal strength mapping. 2009 Sixth International Conference on Wireless On-Demand Network Systems and Services, Snowbird, UT, 85-92.
  • [2] Yin, J., Yang, Q., Ni, L.M. (2008). Learning adaptive temporal radio maps for signal-strength-based location estimation. IEEE Transactions on Mobile Computing, 7(7), 869-883.
  • [3] Ji, Y., Biaz, S., Pandey, S., Agrawal, P. (2006). ARIADNE: a dynamic indoor signal map construction and localization system. Proc. of the 4th international conference on Mobile systems, applications and services, 151-164.
  • [4] de Moraes, L.F.M., Nunes, B.A.A. (2006). Calibration-free WLAN location system based on dynamic mapping of signal strength. Proc. of the 4th ACM international workshop on Mobility management and wireless access, 92-99.
  • [5] Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. Proc. of the 1968 23rd ACM national conference, 517-524.
  • [6] Matheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246-1266.
  • [7] Connelly, K., Liu, Y., Bulwinkle, D., Miller, A., Bobbitt, I. (2005). A toolkit for automatically constructing outdoor radio maps. International Conference on Information Technology: Coding and Computing (ITCC'05)-Volume II, 248-253.
  • [8] Phillips, C., Ton, M., Sicker, D., Grunwald, D. (2012). Practical radio environment mapping with geostatistics. 2012 IEEE International Symposium on Dynamic Spectrum Access Networks, Bellevue, WA, 422-433.
  • [9] Wielgosz, P., Grejner-Brzezinska, D., Kashani, I. (2003). Regional ionosphere mapping with kriging and multiquadric methods. Journal of Global Positioning Systems, 1(4), 48-55.
  • [10] Lee, H. K., Li, B., Rizos, C. (2005). Implementation procedure of wireless signal map matching for locationbased services. Proc. of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 429-434.
  • [11] Kerry, K.E., Hawick, K.A. (1998). Kriging interpolation on high-performance computers. International Conference on High-Performance Computing and Networking, 429-438.
  • [12] Murphy, R.R., Curriero, F.C., Ball, W.P. (2009). Comparison of spatial interpolation methods for wate quality evaluation in the Chesapeake Bay. Journal of Environmental Engineering, 136(2), 160-171.
  • [13] Ye, S.J., Zhu, D.H., Yao, X.C., Zhang, X., Li, L. (2016). Developing a mobile GIS-based component tocollect field data. 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, 1-6.
  • [14] Han, W., Hu, Y., Zhang, J., Liu, Q. (2015). Mobile Data Acquisition and Management System Design Based on GIS and GPRS. Metallurgical and Mining Industry, 2, 243-249.
  • [15] Moszynski, M., Kulawiak, M., Chybicki, A., Bruniecki, K., Bieliński, T., Łubniewski, Z., Stepnowski, A.(2015). Innovative Web-Based Geographic Information System for Municipal Areas and Coastal Zone Security and Threat Monitoring Using EO Satellite Data. Marine Geodesy, 38(3), 203-224.
  • [16] Kulawiak, M., Kulawiak, M. (2017). Application of Web-GIS for Dissemination and 3D Visualization of Large-Volume LiDAR Data. The Rise of Big Spatial Data, Springer International Publishing, 1-12.
  • [17] Bluetooth Special Interest Group. Specification of the Bluetooth® System, version 4.2. 2014. https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439 (Nov. 2016).
  • [18] Gomez, C., Oller, J., Paradells, J. (2012). Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology. Sensors, 12(9), 11734-11753.
  • [19] Townsend, K., Cufí, C., Davidson, R. (2014). Getting started with Bluetooth low energy: tools and techniques for low-power networking. O’Reilly Media, Inc.
  • [20] Mackensen, E., Lai, M., Wendt, T.M. (2012). Performance analysis of an Bluetooth Low Energy sensor system. 2012 IEEE 1st International Symposium on Wireless Systems (IDAACS-SWS), Offenburg, 62-66.
  • [21] Getting Started with iBeacon. (2014). Apple Inc. https://developer.apple.com/ibeacon/Getting-Started-ithiBeacon.pdf (Nov. 2016).
  • [22] iBeacon - Frequently Asked Questions. (2014). Cisco Inc. http://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise-networks/connected-mobile-experiences/ibeacon_faq.pdf (Nov. 2016).
  • [23] Eddystone protocol specification. (2016). https://github.com/google/eddystone/blob/master/protocolspecification.md (Nov. 2016).
  • [24] Moszynski, M., Chybicki, A., Kulawiak, M., Lubniewski, Z. (2013). A novel method for archiving multibeam sonar data with emphasis on efficient record size reduction and storage. Polish Maritime Research, 20(1), 77-86.
  • [25] Kulawiak, M. (2016). Operational algae bloom detection in the Baltic Sea using GIS and AVHRR data. Baltica, 29(1), 3-18.
  • [26] www.convertigo.com (Apr. 2017).
  • [27] openlayers.org (Apr. 2017).
  • [28] Andrienko, G., Andrienko, N., Jankowski, P., Keim, D., Kraak, M. J., MacEachren, A., Wrobel, S. (2007). Geovisual analytics for spatial decision support: Setting the research agenda. International Journal of Geographical Information Science, 21(8), 839-857.
  • [29] Tobler, W. (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2), pp. 234-240.
  • [30] Bär, M. www.geonet.ch (Apr. 2017).
  • [31] Reed, P.M., Ellsworth, T.R., Minsker, B.S. (2004). Spatial interpolation methods for nonstationary plume data. Ground Water, 42(2), 190-202.
  • [32] Murphy, R.R., Curriero, F.C., Ball, W.P. (2009). Comparison of spatial interpolation methods for waterquality evaluation in the Chesapeake Bay. Journal of Environmental Engineering, 136(2), 160-171.
  • [33] Bluetooth Special Interest Group. Specification of the Bluetooth® System, version 1.0. 1999. http://ece.wpi.edu/analog/resources/bluetooth_a.pdf (Nov. 2016).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b65de02c-7e82-4d0a-9132-efe67246cc43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.