PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Role of magnetorheological fluids and elastomers in today’s world

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper explains the role of magnetorheological fluids and elastomers in today’s world. A review of applications of magnetorheological fluids and elastomers in devices and machines is presented. Magnetorheological fluids and elastomers belong to the smart materials family. Properties of magnetorheological fluids and elastomers can be controlled by a magnetic field. Compared with magnetorheological fluids, magnetorheological elastomers overcome the problems accompanying applications of MR fluids, such as sedimentation, sealing issues and environmental contamination. Magnetorheological fluids and elastomers, due to their ability of dampening vibrations in the presence of a controlled magnetic field, have great potential present and future applications in transport. Magnetorheological fluids are used e.g. dampers, shock absorbers, clutches and brakes. Magnetorheological dampers and magnetorheological shock absorbers are applied e.g. in damping control, in the operation of buildings and bridges, as well as in damping of high-tension wires. In the automotive industry, new solutions involving magnetorheological elastomer are increasingly patented e.g. adaptive system of energy absorption, system of magnetically dissociable [hooks/detents/grips], an vibration reduction system of the car’s drive shaft. The application of magnetorheological elastomer in the aviation structure is presented as well.
Rocznik
Strony
267--274
Opis fizyczny
Bibliogr. 71 poz., rys.
Twórcy
autor
  • Transport Department, Center of Transportation and Energy Conversion, Institute of Aviation, Al. Krakowska 110/114; 02-256 Warszawa, Poland
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Avraam M.T. (2009): MR-fluid brake design and its application to a portable muscular rehabilitation device, PhD thesis, Active Structures Laboratory Department of Mechanical Engineering and Robotics, Universite Libre de Bruxelles.
  • 2. Bajkowski J. (2004), Modeling, mathematical description, simulation and experimental research of magnetorheological damper with influence of temperature, Machine Dynamic Problems, 28(3), 9-15.
  • 3. Bajkowski J. (2014), Magnetorheological fluids and dampers, Properties, structure, investigations, modeling and applications, Transport and Communication Publishers, Warsaw (in Polish).
  • 4. Bajkowski J., Bajkowski M., Zalewski R. (2007), L’influence de la temperature sur le travail d’un amortiseur magnetorheologique, XV French-Polish Seminar of Mechanics, France.
  • 5. Bajkowski J., Grzesikiewicz W., Holnicki J., Parafiniak M., Wołejsza Z. (2005), Analysis of the influance of magnetorheological damper on the airplane chassis during landing, ECOMAS, Lizbona.
  • 6. Bajkowski M. (2006), Analysis of the influence of selected characteristics of a magnetorheological damper on change of dynamic properties of special object model, PhD dissertation, Warsaw University of Technology, SiMR, Warsaw.
  • 7. Barvosa-Carter W., Johnson N.L., Browne A.L. (2006), Reversibly expandable energy absorbing assembly utilizing actively controlled and engineered materials for impact management and methods for operating the same, US patent 7.140.478 B2.
  • 8. Bazinenkov A., Valery P. Mikhailov V.P. (2004), Active and semi active vibration isolation systems based on magnetorheological materials, Procedia Engineering, 106, 170-174.
  • 9. Brei D., Redmond J., Wilmont A.L., Browne N.A., Johnson N.L., Jones G.L. (2006), Hood lift mechanisms utilizing active materials and methods of use, EU patent EP 1 617 022 A2.
  • 10. Carlson J. D. (2001), What makes a good MR fluid?, Proceedings of the Eighth International Conference, Electrorheological Fluids and Magnetorheological Suspensions.
  • 11. Carlson J.D. (1999), Low-cost MR fluid sponge devices, Proceeding of the 7th international conference on ER fluids and MR suspensions, World Scientific Publishing Co. Pte. Ltd., Honolulu Hawaii.
  • 12. Carlson J.D., Jolly M.R. (2000), MR fluid, foam and elastomer devices, Mechatronics, 10, 555-569.
  • 13. Carlson J.D., Weiss K.D. (1994), A growing attraction to magnetic fluids, Machine Design, 8, 61-66.
  • 14. Dyke S.J., Spemcer B.F., Sain M.K., Carlson J.D. (1998), An experimental study of MR dampers for seismic protection, Smart Mater Struct., 7, 693-703.
  • 15. Dyke S.J., Spencer B.F., Sain M.K., Carlson J.D. (1996), Modeling and control of magnetorheological dampers for seismic response reduction, Smart Materials and Structures, 5(5), 565-575.
  • 16. Elie L.D., Ginder J.M., Mark J.S., Nichols M.E., Stewart W.M. (1999), Method for allowing rapid evaluation of chassis elastomeric devices in motor vehicles, US patent 5.974.856.
  • 17. Fang F.F., Jang I. B., Choi H.J. (2007), Single-walled carbon nanotube added carbonyl iron suspension and its magnetorheology, Department of Polymer Science and Engineering, Inha University, Incheon, 402-751, Republic of Korea.
  • 18. Flores G.A., Liu J. (2002), In-Vitro blockage of a simulated vascular system using magnetorheological fluids as a cancer therapy, European Cells and Materials, 3, 9-11.
  • 19. Forte P., Paternò M., Rustighi E. (2004), A Magnetorheological Fluid Damper for Rotor Applications, International Journal of Rotating Machinery, 10(3), 175-182.
  • 20. Genc S. (2002), Synthesis and properties of magnetorheological (MR) fluids, PhD dissertation, University of Pittsburgh.
  • 21. Goncalves F.D. (2005), Characterizing the behavior of magnetorheological fluids at high velocities and high shear rates, PhD thesis, Virginia Polytechnic, Blacksburg.
  • 22. Gordaninejad F., Sahdi M., Hansen B.C., Chang F.K. (2002), Magneto-rheological fluid dampers for control of bridges, J. of Int. Material Systems and Structures, 13, 167-180.
  • 23. Griffin M.J., Wu X. (1998), The influence of end-stop buffer characteristics on the severity of suspension seat-stop impacts, Journal of sound and vibration, 215(4), 989-996.
  • 24. Hiemenz G., Wereley N. (1999), Seismic response of civil structures utilizing seni-active MR and ER bracing systems, Journal of intelligent material systems and structures, Vol 10, Issue 8, 646-651.
  • 25. Imthiyaz T.A, Sundarrajan R., Prasaath G.T., Raviraj V. (2014), Implementation of Magneto-rheological Dampers in Bumpers of Automobiles for Reducing Impacts during Accidents, Procedia Engineering, 97, 1220-1226.
  • 26. Kaleta J. (2013), Magnetic Materials SMART: Structure, manufacturing, investigations, properties, applications, Publishing House of Wroclaw University of Technology, (in Polish).
  • 27. Kaleta J.Z., Lewandowski D. (2007), Inelastic properties of magnetorheological composites: I. Fabrication, experimental tests, cyclic shear properties, Smart Materials Structures, 16, 1948-1953.
  • 28. Kaleta J.Z., Lewandowski D., Ziętek G. (2007), Inelastic properties of magnetorheological composities: II: Model identification of parameters, Smart Materials and Structures, 16, 1954-1960.
  • 29. Kikuchi T., Ikeda K., Otsuki K., Kakehashi, Furusho J. (2009), Compact MR fluid clutch device for human-friendly actuator, Journal of Physics, 149, 1-4.
  • 30. Kikuchi T., Otsuki K., Furusho J., Abe H. (2010), Design and development of compact magnetorheological fluid clutch (CMRFC) with Multi-layered disks and micro-sized gaps, Journal of the Society of Rheology, 38, 17-22.
  • 31. Klukowski C. (2009), Steering column for a motor vehicle, US patent 20090033082 A1.
  • 32. Lee H.G., Sung K.G., Chois S.B. (2009), Ride comfort characteristics with different tire pressure of passenger vehicle featuring MR damper, Journal of Physics, 149, 1-4.
  • 33. Lee U., Kim D., Jeon D. (1999), Design analysis and experimental evaluation of an ER and MR clutch, Journal of intelligent materials and structures, Vol 10, Issue 9, pp. 701-707.
  • 34. Li W.H., Zhang X.Z., Du H. (2013), Magnetorheological elastomers and their applications, University of Wollongong, Research Online
  • 35. Li Y., Li J., Li W.,Du, H. (2014), A state-of-the-art review on magnetorheological elastomer devices, Smart Materials and Structures, 23(12), 1-24.
  • 36. Li Z.X., Yu Chen Y., Yun-Dong Shi Y. (2016), Seismic damage control of nonlinear continuous reinforced concrete bridges under extreme earthquakes using MR dampers, Soil Dynamics and Earthquake Engineering, 88, 386–398.
  • 37. Milecki A. (2001), Investigation and control of magneto-rheological fluid dampers, International journal of machine tools & manufacture, 41, 379-391.
  • 38. Milecki A. (2004), Modeling of magneto-rheological schock absorbers, Archiwum technologii maszyn i automatyzacji (In Polish), Vol 24, no. 2, 123-129.
  • 39. Milecki A., Ławniczak A. (1999), Electro- and Magnetorheological fluids and their applications in technics, Publishing house of Poznan University of Technology (in Polish).
  • 40. Muc A., Barski M. (2007), Magnetorheological fluids and their practical applications, Publishing house of Cracow University of Technology (in Polish).
  • 41. Nyawako D., Reynolds P. (2007), Technologies for mitigation of human – induced vibrations in civil engineering structures, The shock and vibration digest, 39(6), 465-493.
  • 42. Olabi A. G., Grunwald A. (2007), Design and application of magneto-rheological fluid, Materials and Design, 28, 2658-2664.
  • 43. Ottaviani R.A., Ulicny J.C., Golden M.A. (2006), Magnetorheological nanocomposite elastomer for releasable attachment applications, US patent 6.877.193 B2.
  • 44. Park Ch., Jeon D. (2002), Semiactive vibration control of a smart seat with an MR fluid damper considering its time delay, Journal of intelligent material systems and structures, 13, 521-524.
  • 45. Park E. J., Falcao L., Suleman A. (2008), Multidisciplinary design optimization of an automotive magnetorheological brake design, Computers and Structures, 86, 207-216.
  • 46. Poynor J. C. (2001), Innovative Designs for Magneto-Rheological Dampers, master thesis, Virginia Polytechnic, Blacksburg.
  • 47. Rabinow J. (1948), The magnetic fluid clutch, AIEE Transactions, 67: 1308-1315.
  • 48. Rabinow J. (1951), Magnetic fluid torque and force transmitting device, U.S. Patent 2, 575.
  • 49. Sapiński B. (2006), Magnetorheological dampers in vibration control, AGH University of Science and Technology Press, Kraków
  • 50. Sapiński B., Snamina J. (2007), Cable – MR damper system motion in transients, Mechanics 26, 22-29.
  • 51. Sapiński B., Snamina J., Maślanka M, Rosół M. (2006), Facility for testing of magnetorheological damping systems for cable vibrations, Mechnics, 25/3, 135-
  • 52. Sassi S., Cherif K., Mezghani L., Thomas M., Kotrante A. (2005), An innovative magnetorheological damper for automotive suspension: from design to experimental characterization, Smart Mater. Struct., 14, 811-822.
  • 53. Schwartz M. (2009), Smart Materials, Taylor and Francis Group
  • 54. Skalski P (2014), Morphing Structure with a Magnetorheological Material – Preliminary Approach, Mechatronics 2013 Recent Technological and Scientific Advanced. Springer International Publishing, 219-226.
  • 55. Skalski P., Parafiniak M., Wysokiński D., Bednarski M. (2014), Aerodynamic profile with elastic skin of active material, P-409202, Polish patent, 29.02.2016.
  • 56. Skorupka Z. (2010), Magnetorheological fluids as method for active controlling of landing gear shock absorber characteristic, Transactions of the Institute of Aviation, 207, 36-48.
  • 57. Spaggiari A. (2013), Properties and applications of Magnetorheological fluids, Dept. of Engineering Sciences and Methods, University of Modena and Reggio Emilia, Italy.
  • 58. Spencer B. F., Tomizuka M., Yun C. B., Chen W. M., Chen R. W. (2007) World Forum on Smart Materials and Smart Structures Technology, Proceedings of the World Forum on Smart Materials and Smart Structures Technology, Taylor & Francis Group, 291-294.
  • 59. Stewart W.M., Ginder J.M., Ellie L.D., Nicholas M.E. (1998), Method and apparatus for reducing brake shudder, US patent 5.816.587.
  • 60. Szeląg W., Nowak L., Myszkowski A. (2000), Electromagnetic brake with magnetorheological fluid, Scientific Works of the Institute of Electric Machines, Drives and Measurements, 48, 206-213.
  • 61. Tao R. (2011), Electro-Rheological Fluids And Magneto-Rheological Suspensions, Proceedings of the 12th International Conference, World Scientific, Singapure, 748.
  • 62. Thorarinsson E. T., Jonsdottir F., Palsson H. (2006), Design of a Magnetorheological Prosthetic Knee, Department of Mechanical Engineering, University of Iceland.
  • 63. Watson J.R. (1997), Method and apparatus for varying the stiffness of a suspension busing, US patent 5.609.353.
  • 64. Xiao-min D., Yu Miao, Liao C., Chen W. ( 2009), A new variable stiffness absorber based on magneto-rheological elastomer, Transactions of Nonferrous Metals Society of China, 19, 611-615.
  • 65. Yoon S.-S., Kang S., Kim S.J., Kim Y.-H., Kim M., Lee C. (2003), Safe arm with MR-based passive compliant joints and visco-elastic covering for service robot applications, Intl. Conference on Intelligent Robots and Systems, October, Nevada, 2191-2196.
  • 66. BWI Group.com, MAGNERIDE™ CONTROLLED SUSPENSION SYSTEM (2013), http://www.bwigroup.com/en/pshow.php?pid=22; 08.08.2016.
  • 67. BWI Group.com, MAGNETO-RHEOLOGICAL MOUNTS (2013) http://www.bwigroup.com/en/pshow.php?pid=26; 08.08.2016.
  • 68. Carlson J.D. (2002), http://www.sensorsmag.com/sensors/electricmagnetic/controlling-vibration-with-magnetorheological-fluiddamping-999; 08.08.2016.
  • 69. http://robohub.org/icelands-ossur-wins-popsci-best-of-whats-newaward-for-symbionic-leg/; 08.08.2016.
  • 70. https://www.dywidag-systems.com/emea/projects/projectdetails/article/dr-franjo-tudjmann-bridge-dubrovnik-croatia.html; 08.08.2016.
  • 71. Magneto-Rheological (MR) Fluid, “LORD is proud to be the exclusive supplier of MR Fluid technology…” Retrieved from: http://www.lord.com/products-and-solutions/active-vibrationcontrol/industrial-suspension-systems/magneto-rheological-(mr)-fluid; 08.08.2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b6593653-85aa-4213-b4ae-daa52c995293
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.