PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Joining Behaviour of Thick Plate Using High-Frequency Induction Assisted Arc Welding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Combining a preheating source with conventional arc welding is a promising method to study the weld quality and improvement of strength for high-strength super-alloy materials. The present research used an induction preheating source with plasma arc welding (PAW) to weld Inconel 625 thick plates. The investigation was performed at a constant induction current of 600 A, welding speed of 100 mm/min and a plasma welding current of 135 A. The induction-assisted plasma arc welding (IAPAW) demonstrated that a weld joint was possible with static induction preheating and a high plasma welding current at low welding speed. The microstructural observation showed various dendritic structures in the fusion zone (FZ). The FESEM and EDX analysis confirmed the formation of Laves phase in the interdendritic structure of the FZ. The ultimate tensile strength of the IaPaW joint reached to 658 MPa. The tensile fracture surface of the welded sample revealed a lower number of dimples, indicating the reduction of ductility. The XRD analysis was carried out at various zones and it confirmed the peak shifting towards the higher 2-theta value of the FZ.
Twórcy
  • IIT Guwahati, Guwahati-781039, India
autor
  • IIT Guwahati, Guwahati-781039, India
Bibliografia
  • [1] R.I. Badiger, S. Narendranath, M.S. Srinath, Joining of Inconel-625 alloy through microwave hybrid heating and its characterization. J. Manuf. Process. 18, 117-123 (2015).
  • [2] K.D. Ramkumar, S.S. Mulimani, K. Ankit, A. Kothari, S. Ganguly, Effect of grain boundary precipitation on the mechanical integrity of EBW joints of Inconel 625. Mater. Sci. Eng. A. 808, 140926 (2021).
  • [3] J.N. DuPont, C.V. Robino, J.R. Michael, M.R. Nous, A.R. Marder, Solidification of Nb-bearing superalloys: Part I. Reaction sequences. Metall. Mater. Trans. A. 29 (11), 2785-2796 (1998).
  • [4] A.N. Ebrahimi, N.B.M. Arab, M.H. Gollo, Thermal analysis of laser beam welding of nickel-based super alloy Inconel 625 to AISI 316L, using Gaussian optics theory in keyhole. J. Brazilian Soc. Mech. Sci. Eng. 38 (4), 1199-1206 (2016).
  • [5] J. Sivakumar, N.N. Korra, Optimization of Welding Process Parameters for Activated Tungsten Inert Welding of Inconel 625 Using the Technique for Order Preference by Similarity to Ideal Solution Methodology. Arab. J. Sci. Eng. 46 (8), 7399-7409 (2021).
  • [6] K.H. Song, W.Y. Kim, K. Nakata, Evaluation of microstructures and mechanical properties of friction stir welded lap joints of Inconel 600/SS 400. Mater. Des. 35, 126-132 (2012).
  • [7] M.F. Chiang, C. Chen, Induction-assisted laser welding of IN-738 nickel-base superalloy. Mater. Chem. Phys. 114 (1), 415-419 (2009).
  • [8] A. Ikram, N. Arif, H. Chung, Design of an induction system for induction assisted alternating current gas metal arc welding. J. Mater. Process. 231, 162-170 (2016).
  • [9] H.R. Zareie Rajani, S.A.A. Akbari Mousavi, The effect of explosive welding parameters on metallurgical and mechanical interfacial features of Inconel 625/plain carbon steel bimetal plate. Mater. Sci. Eng. A. 556, 454-464 (2012).
  • [10] J.W. Han, S.H. Jung, H. Cho, H.W. Lee, Investigation of the weld properties of Inconel 625 based on Nb Content. Int. J. Electrochem. Sci. 13, 2829-2841 (2018).
  • [11] N.L. Richards, X. Huang, M.C. Chaturvedi, Heat affected zone cracking in cast inconel 718. Mater. Charact. 28 (4), 179-187 (1992).
  • [12] J. Sivakumar, N.N. Korra, P. Vasantharaja, Computation of residua stresses, distortion, and thermogravimetric analysis of Inconel 625 weld joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235 (19), 4109-4118 (2021).
  • [13] N. Arif, H. Chung, Alternating current-gas metal arc welding for application to thick plates. J. Mater. Process. Technol. 222, 75-83 (2015).
  • [14] R.S. Coelho, M. Corpas, J.A. Moreto, A. Jahn, J. Standfuß, A. Kaysser-Pyzalla, H. Pinto, Induction-assisted laser beam welding of a thermomechanically rolled HSLA S500MC steel: A microstructure and residual stress assessment. Mater. Sci. Eng. A. 578, 125-133 (2013).
  • [15] R. Sun, Y. Shi, Y. Yang, X. Wang, X. Zhou, Microstructure, element segregation and performance of Inconel 625 metal layer deposited by laser-assisted ultra-high frequency induction deposition. Surf. Coat. Technol. 405, 126715 (2021).
  • [16] R.K.B. Meitei, P. Maji, A. Samadhiya, R. Karmakar, S.K. Ghosh, S.C. Saha, An experimental investigation on joining of copper and stainless steel by induction welding technique. Int. J. Precis. Eng. Manuf. 21, 613-621 (2020).
  • [17] B.M. R.K., P. Maji, A. Samadhiya, S.K. Ghosh, B.S. Roy, A.K. Das, S.C. Saha, A study on induction welding of mild steel and copper with flux under applied load condition. J. Manuf. Process. 34, 435-441 (2018).
  • [18] T. Bayerl, M. Duhovic, P. Mitschang, D. Bhattacharyya, The heating of polymer composites by electromagnetic induction - a review. Compos Part A Appl Sci Manuf. 57, 27-40 (2014).
  • [19] N. Sommer, S. Böhm, Laser-induction welding of nodular grey cast iron using oscillating beam guidance-microstructural and mechanical characterization. J. Advanced Joining Process. 5, 100078 (2022).
  • [20] S. Raj, P. Biswas, High-frequency induction assisted hybrid friction stir welding of Inconel 718 plates. J. Manuf. Sci. Eng. 144, 1-15 (2021).
  • [21] H.T. Zhang, X.Y. Dai, J.C. Feng, L.L. Hu, Preliminary investigation on real-time induction heating-assisted underwater wet welding. J Weld, 1, 8-15 (2015).
  • [22] S. Kou, Welding Metallurgy, 2nd Edition, 2003.
  • [23] S.G.K. Manikandan, D. Sivakumar, K. Prasad Rao, M. Kamaraj, Laves phase in alloy 718 fusion zone - Microscopic and calorimetric studies. Mater. Charact. 100, 192-206 (2015).
  • [24] S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, K.B.S. Rao, B. Raj, Characterization of microstructures in Inconel 625 using X-ray diffraction peak broadening and lattice parameter measurements. Scr. Mater. 51, 59-63 (2004).
  • [25] G. Li, J. Huang, Y. Wu, An investigation on microstructure and properties of dissimilar welded Inconel 625 and SUS 304 using high-power CO2 laser. Int. J. Adv. Manuf. Technol. 76 (5-8), 1203-1214 (2015).
  • [26] C. Radhakrishna, K. Prasad Rao, The formation and control of laves phase in superalloy 718 welds. J. Mater. Sci. 32 (8), 1977-1984 (1997).
  • [27] S. Dev, K.D. Ramkumar, N. Arivazhagan, R. Rajendran, Investigations on the microstructure and mechanical properties of dissimilar welds of inconel 718 and sulphur rich martensitic stainless steel, AISI 416. J. Manuf. Process. 32, 685-698 (2018).
  • [28] K. Sivaprasad, S. Ganesh Sundara Raman, Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments. Metall. Mater. Trans. A. 39 (9), 2115-2127 (2008).
  • [29] M. Sharifitabar, S. Khorshahian, M.S. Afarani, P. Kumar, N.K. Jain, High-temperature oxidation performance of Inconel 625 superalloy fabricated by wire arc additive manufacturing. Corros. Sci. 197, 110087 (2022).
  • [30] R. Jiang, A. Mostafaei, J. Pauza, C. Kantzos, A.D. Rollett, Varied heat treatments and properties of laser powder bed printed Inconel 718. Mater. Sci. Eng. A. 755, 170-180 (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b653b028-19ce-4b0a-ba4d-0828560ea986
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.